Single-site Laparoscopic Total Hysterectomy

Frederico José Silva Corrêa, MD

The latest advancement of laparoscopic minimally invasive surgery in the last couple years is the single port (SPL), also known as a single-incision laparoscopic surgery (SILS) or laparoendoscopy single site surgery (LESS surgery). The LESS technique is laparoscopic surgery performed by only one incision, usually in the umbilical region. The laparoscope and tweezers are introduced through this single incision to perform the procedure. Initial studies have shown that the technique is reliable and applies to the areas of general surgery and urology. The use of LESS in gynecologic surgeries is recent and the number of cases reported in the literature remains low, respectively. Still, pioneering groups have observed promising results with LESS in both, simpler procedures such as salpingectomy and oophorectomy, and more complex such as hysterectomies and pelvic lymphadenectomy.

CASE DESCRIPTION

Patient, 44 years old, married, complaining of dysmenorrhea and chronic pelvic pain for about two years with progressive worsening. She presents hypermenorrhea and menorrhagia for one year. She was referred for hysterectomy with the diagnosis of diffuse adenomyosis. She had two normal pregnancies and two natural births. Her personal history includes a laparoscopy 11 years ago to treat fibroids and ovarian endometriosis. Her pap smear was negative for neoplastic cells.

On physical examination the patient was in good general condition, with body mass index of 29.6 kg/m². Genital examination showed a normal vulva and vagina. The bimanual digital pelvic examination showed an anteverosflexion uterus (AVF), increased in size, mobile and with painful mobilization. The ovaries were normal in size and location without pain in mobilization. The pouch of Douglas exam was painful but without palpable nodules. The patient underwent a transvaginal ultra-

LEARNING OBJECTIVES

▲ Determine what equipment is necessary when performing a laparoendoscopy single site total hysterectomy
▲ Identify the appropriate instruments needed for this operation
▲ Note the postoperative considerations and possible complications
▲ Discuss the history and timeline of LESS procedures
▲ Access the benefits of laparoendoscopic surgeries
sound examination that showed an AVF uterus, heterogeneous myometrium with echogenic areas, diffuse and isolated cystic areas in the anterior wall that is thickened. Uterine volume is 142cm³. Endometrium was echogenic, regular with 11mm thick. Normal ovaries. After the diagnosis of diffuse adenomyosis, clinical treatment introduced. It was done using continuous combined estrogen and progesterone contraceptive pills, continuous oral progesterone or anti-inflammatory drugs. However, no significant improvement of clinical symptoms was observed and side effects hormone therapy forced discontinuation of treatment. It was then indicated a total hysterectomy. After orientation, the patient opted for laparoscopic hysterectomy. The patient was offered the possibility of LESS surgery that was accepted by patient. Prior to the appointment and the procedure, the patient signed an informed consent form (ICF) for surgery and another ICF allowing the publication of the case.

The laparoscope 10 mm with flexible tip was introduced through the channel port and then a 5mm curved forceps and an ultrasonic scalpel was introduced into the other two channels.

Operative Procedure

The patient went under general anesthesia with endotracheal intubation and was placed in a supine position with legs parted. After antisepsis, a vesical catheterization was performed. A disposable intrauterine manipulator was used.
introduced and a scalpel was used to perform a 2.5 cm longitudinal incision to open the peritoneal cavity. A LESS port disposable model was introduced and carried through the CO2 infusion to form a pneumoperitoneum. After establishing the pneumoperitoneum pressure of 14mmHg, the patient was placed in lithotomy with Trendelenburg to displace and protect the rectum and bowel. The laparoscope 10 mm with flexible tip was introduced through the channel port and then a 5mm curved forceps and an ultrasonic scalpel was introduced into the other two channels.

With the entire abdominal cavity in view, the hysterectomy procedure begins. An ultrasonic scalpel is used to perform the ligation and section of the adnexal pedicles and round ligaments. The broad ligaments and peritoneum fold of the bladder are held as the bladder is lowered. The uterine arteries are identified, ligated and divided with an ultrasonic scalpel, followed by the opening of the vagina and removing the uterus. The vagina is anchored to the uterosacral and cardinal ligaments with a laparoscopic needle holder and an absorbable suture. Once this step is complete, the uterus and adnexa are removed and the closing of the vagina begins. Trocars remain in place and the abdomen is resufflated with CO2 and the surgeon checks for hemostasis. The pelvis is irrigated and suctioned and the pneumoperitoneum is released. The trocars are released and the umbilical incision was closed with stitches in the aponeurosis with polyglactin 910 and 4-0 suture.

POST-OP

This surgery was uneventful, and the patient recovered well after surgery with no complaints of significant pain and showed no immediate complications. The patient was discharged in good condition within 40 hours postoperatively.

OTHER POSTOPERATIVE CONSIDERATIONS

Patients are transferred to the PACU and monitored for fluid maintenance and pain. A liquid diet is recommended for 12 to 24 hours following the operation to assist with limiting nausea and slowing of gastrointestinal activity. The bladder may be drained if spontaneous voiding does not occur. After the patient is given a good prognosis, he or she may return to normal activities within a week.

Complications from this procedure can include hemorrhaging, failed LAVH and conversion to laparotomy, injury to major blood vessels, bowel injury, ureteral injury, bladder

VAGINAL AND LAPAROSCOPICALLY ASSISTED VAGINAL Hysterectomy (LAVH)

Equipment
- Allen stirrups
- Electrosurgical unit
- SCD pump
- Video system
- Laparoscopic irrigator/suction
- Bipolar generator

Instruments
- GYN laparoscopy set
- Laparotomy instrument set
- Abdominal hysterectomy set
- D&C set
- Camera

Supplies
- LAVH supplies including any disposable or nondisposable laparoscopic supplies such as trocars, Veress needle, acorn cannula, endoscopic scissors, graspers, dissectors
- Gloves
- Surgeon-specific sutures
- Blades
- Basin set
- Dressing material according to surgeon preference
- LAVH drape

Operative Preparation

Anesthesia
- General anesthetic

Position
- Low lithotomy position
 - with Allen stirrups

Prep
- Abdominal and vaginal prep
- Patient is catheterized

Draping
- Drape sheet under the buttocks
- Leggings
- LAVH Laparoscopic drape sheet (may have attached leggings)

Practical Considerations for Surgical Technologist

Check all equipment and supplies prior to patient’s arrival.
PATIENT SAFETY – LITHOTOMY POSITION

<table>
<thead>
<tr>
<th>Potential Hazards</th>
<th>Precautionary Action(s)</th>
</tr>
</thead>
</table>
| Crushing or shearing injury to the head | - Place arms on armboards
- If arms are positioned at the patient’s sides, the hands must be observed during movement of the operating table. |
| Pressure injury to skin, blood vessels and nerves | - Pad feet and ankles
- Be sure restraining devices are not restrictive
- Avoid excessive torsion, flexion or extension of any part of the patient’s body
- The legs may not come in direct contact with the stirrups
- Adjust stirrups to an equal height and length
- Raise and lower legs slowly and simultaneously by two individuals |
| Back, knee and hip pain | - Buttocks should rest completely on the operating table
- Adjust stirrups to an equal height and length
- Raise and lower legs slowly and simultaneously by two individuals |
| Blood pressure changes | - Raise and lower legs slowly and simultaneously by two individuals |
| Venous stasis | - Use antiembolic devices |
| Cardiovascular and respiratory compromise | - Restrict accompanying use of Trendelenburg’s position
- Decrease leg height and hip flexion
- Return patient to the supine position as soon as possible |
injury, wound infection and hernias at trocar sites. A long-term complication from this surgery can include developing vesicovaginal or entero vaginal fistulas.

AN OVERVIEW OF LESS

The first laparoscopic surgeries were performed by single port. Wheeless reported more than 4,000 cases of rapid and effective surgical sterilization by laparoscopy with only a single trocar incision about 20 years after the first complex procedure by a single trocar that resulted in a supracervical hysterectomy in four patients. However, the technique did not become a standard procedure at that time. The initial difficulties related to a lack of appropriate instrumentation, which evolved into the LESS stagnation. In recent years there has been an increase in the interest of surgeons for the surgery by single port. The development of specific instruments and equipment for the LESS has contributed in the evolution of the technique. Reproducibility and safety of new materials has allowed the improvement of skill and performance of procedures of greater complexity. LESS surgery has been used in several procedures such as cholecystectomy, appendectomy, nephrectomy, colectomy, adrenalectomy, liver resection and bariatric surgery among others. Although, overall, fewer gynecological surgeries have been carried out by LESS.

Kosumi et al, in 2001, carried out laparoscopic ovarian cystectomy for a single incision. Then, Ghezzi et al, reported a successful single port surgery for the surgical treatment of ectopic pregnancy in 10 patients. Lim et al, in 2009, reported the use of LESS in the treatment of 12 patients with benign adnexal tumor and had no complications. Also in 2009, Kim et al, also reported 24 cases of surgery with the LESS approach in adnexal tumors without intraoperative complications. In 2009, Lee et al, reported performing 24 laparoscopically assisted vaginal hysterectomies with LESS. Langebrekke et al, in the same year reported the first case of laparoscopic total hysterectomy through single incision. A camera and a multiple port device was used at the time. The suture of the vaginal vault was performed laparoscopically. In the following year, Yoon et al, reported performing supracervical hysterectomy by LESS with transcervical morcellation of the uterus.

Kim et al, recently published a comparative study between LESS and conventional laparoscopy in cases of assisted vaginal laparoscopic hysterectomy. The patients who underwent LESS surgery had a lower score on the visual analog scale of pain post-surgery at 24 and 36 hours.
Yim et al, published a study comparing hysterectomy for LESS (52 patients) and conventional laparoscopic hysterectomy (105 patients). The LESS group showed less intraoperative blood loss, shorter hospital stays and earlier introductions of solid diets. However, complications rates did not vary from each study. Chen et al. in 2011, published a randomized trial comparing LESS (50 cases) and conventional laparoscopic cases of laparoscopic assisted vaginal hysterectomy (50 cases). The authors concluded that there was no difference in operative time, blood loss, length of hospital stay and complication rate between the groups. However, the LESS group had less postoperative pain than the other group.

Jung et al, in a prospective randomized study of 68 patients who underwent conventional laparoscopy surgery or LESS, observed no significant difference in pain scores between groups. However, the LESS group used more analgesics than the laparoscopic conventional group.11

A recent study by Escobar et al, demonstrated the use of LESS surgery in gynecological oncology surgeries. Twenty-one patients underwent pelvic and para-aortic lymphadenectomy staging for endometrial cancer and ovarian cancer. The authors concluded that the technique was feasible for such cases and that further studies should be conducted to assess the possible benefits of the new technique.

THE FUTURE

The possible advantages of using LESS surgery are related to reducing the number of auxiliary punctures. The effect of cosmetic (aesthetic) is a reality but can be quite questionable. The performance of only one umbilical incision of 20mm in LESS against the need for more auxiliary incisions in conventional laparoscopy in theory reduces the inherent risks in such punctures (bleeding, perforation of viscera or vessel and infection). Other advantages are the least reported postoperative pain, faster recovery times and shorter hospitalizations. However, these advantages still require confirmation with more studies, but this specific case confirms that the surgical technique for single portal is feasible, safe and reproducible and opens new perspectives in the treatment of gynecological diseases with minimally invasive surgical procedures.

REFERENCES

ABOUT THE AUTHOR

Frederico José Silva Corrêa, MD, is medical graduate from the Federal University of Goias. His surgical specialities include gynecology and laparoscopic procedures.
14. Kommu SS, Kaouk JH, Rane` A. Laparo-endoscopic single-site surgery: pre-
liminary advances in renal surgery. BJU Int. 2009;103:1034-1037.
15. Kosumi T, Kubota A, Usui N, Yamauchi K, Yamasaki M, Oyanagi H. Lapa-
roscopic ovarian cystectomy using a single umbilical puncture method. Surg
16. Langebrekke A, Vqvigstad E. Total laparoscopic hysterectomy with single-
port access without vaginal surgery. J Minim Invasive Gynecol. 2009;16:609-
611.
17. Langwieler TE, Nimesgern T, Back M. Single-port access in laparoscopic
nal hysterectomy: a novel method with a wound retractor and a glove. J
19. Lim MC, Kim TJ, Kang S, Bae DS, Park SY, Seo SS. Embryonic natural ori-
cice transumbilical endoscopic surgery (E-NOTES) for adnexal tumors. Surg
20. Mereu L, Angioni S, Melis GB, Mencaglia L. Single access laparoscopy for
adnexal pathologies using a novel reusable port and curved instruments. Int
21. Nieboer TE, Johnson N, Lethaby A, et al. Surgical approach to hysterecto-
my for benign gynaecological disease. Cochrane Database System Review.
2009;CD003677.
22. Pelosi MA, Pelosi MA. Laparoscopic supracervical hysterectomy using a sin-
23. Podolsky ER, Rottman SJ, Poblete H, King SA, Curcillo PG. Single port
access (SPA) cholecystectomy: a completely transumbilical approach. J Lap-
24. Raman JD, Bagrodia A, Cadeddu JA. Single-incision, umbilical laparoscop-
ic versus conventional laparoscopic nephrectomy: a comparison of peri-
surgery in gynecology: review of literature and available technology. J Mini-
27. Walz MK, Groeben H, Alesina PF. Single-access retroperitoneoscopic adre-
nalectomy (SARA) versus conventional retroperitoneoscopic adrenalectomy
28. Wheless CR. A rapid, inexpensive and effective method of surgical steriliza-
2010;17:78-81.

CE EXAM

Earn CE Credits at Home
You will be awarded continuing education (CE) credits toward your recertifica-
tion after reading the designated article and completing the test with a score of
70% or better. If you do not pass the test, it will be returned along with your payment.
Send the original answer sheet from the journal and make a copy for your records. It is a faster option for processing of
credits and offers more flexibility for correct payment. When submitting multiple tests, you do not need to submit a separate check
for each journal test. You may submit multiple journal tests with one check or money order.

Members this test is also available online
at www.ast.org. No stamps or checks and it
posts to your record automatically!

Members: $6 per credit
(per credit not per test)
Nonmembers: $10 per credit
(per credit not per test plus the $400 nonmember
fee per submission)

After your credits are processed, AST will send you a letter acknowledging the number of credits that were accepted. Members can also check your CE credit status online with
your login information at www.ast.org.

3 WAYS TO SUBMIT YOUR CE CREDITS
Mail to: AST, Member Services, 6 West Dry Creek
Circle Ste 200, Littleton, CO 80120-8031
Fax CE credits to: 303-694-9169
E-mail scanned CE credits in PDF format to:
memserv@ast.org

For questions please contact Member Services -
memserv@ast.org or 800-637-7433, option 3.
Business hours: Mon–Fri, B.08a.m. – 4:30 p.m., MT