463

JULY 2022 | The Surgical Technologist | 309 at the forefront of pathophysiologic investigations of CAC (111). Because of surgeons’ historical experience on the intricacies of hemostasis, surgeons have employed TEG/ROTEM to guide and personalize anticoagulation during the COVID-19 pandemic (20–22, 28, 29, 101, 112). TEG/ROTEM have also been used to profile postoperative patients at risk for VTE (23, 113–116). This background in using TEG/ROTEM to predict a patient’s fibrinolytic phenotype prepares the surgeon to manage CAC patients. Given the significant variation in risk of the development of either a hypocoagulopathic- or hypercoagulopathic-related complication in the perioperative period as a function of the severity of COVID-19 illness, it is difficult to rely on arbitrary standards regarding the timing of surgery and the nature of anticoagulation and thromboprophylaxis in this group of patients (17, 28, 29, 31, 108). The recent evolution of the less virulent but more infectious variants, such as the omicron (B.1.1.529), may render guidelines regarding the timing and nature of therapeutic anticoagulation and thromboprophylaxis for the surgical patient less applicable. Although there is no data directly demonstrating lower risk of thrombosis in patients infected with omicron versus other more virulent variants, thrombosis risk in COVID-19 patients is in large part a function of illness severity (117, 118). By logical extension of this evidence, it is likely omicron infection carries less thrombotic risk compared to more virulent variants such as alpha or delta. Age, comorbidities, and overall clinical picture are paramount to consider when deciding to what degree the individual patient should be anticoagulated. There are no plasma-based laboratory tests which allow for prediction of the likelihood of perioperative complications regarding coagulation for the surgical patient with either acute or remote COVID-19 infection. Historically, VHAs have been used to predict both bleeding and clotting in patients undergoing liver transplantation, cardiac surgery, trauma surgery, and most recently, bleeding and clotting obstetric patients. Most recently, adjunctive TEG has demonstrated prediction of VTE in critically ill COVID-19 patients (20–23). However, categorizing patients’ fibrinolytic and coagulopathic phenotype with TEG/ROTEM, as has been done by surgeons for decades, may allow the surgeon to better predict the development of perioperative clot and to manage pre- and post-surgical clots more effectively in the COVID-19 patient. In addition, platelet activation can be graded with plasma microclot density analysis, which has demonstrated that Long COVID patients have a persistent coagulopathy and increased microclot formation (119). Together, TEG/ROTEM with microclot analysis may predict the surgical patient’s position in the hemostatic and fibrinolysis spectrum in the absence of evidenced biomarkers. Figure 3 illustrates the ‘rollercoaster’ phenomenon of hospitalized COVID-19 patients as characterized by TEG/ROTEM in the acute and subacute periods, as well as the remote period after discharge (77). Figure 4 provides a prototype spectrum of CAC wherein the patient’s individual coagulopathy may be modified by the COVID-19 variant and is characterized by TEG/ROTEM and plasma microclot analysis. Studies are in progress regarding microclot analysis as an enhanced method of hemostatic grading (78). SURGICAL SOCIETIES’ RECOMMENDATIONS FOR THE COVID-19 PATIENT’S TIMING OF SURGERY AND THROMBOPROPHYLAXIS Emergency surgery in the acute period of COVID-19 infection requiring hospitalization is associated with high mortality (8, 123). These increases in mortality have been observed across various surgical specialties (123). As a result, there are surgical specialty-specific recommendations regarding the timing of surgery for patients with symptomatic and asymptomatic SARS-CoV-2 infection. These recommendations are varied and a function of institutional preference and expert consensus. Table 2 and the text below summarizes the literature and recommendations of the leading surgical and obstetric organizations regarding the timing and administration of thromboprophylaxis for patients with acute and remote SARS-CoV-2 infection. Obstetrics Obstetricians have long experience with surgical interventions on patients who have peripartum coagulopathies wherein the patient may switch between hemorrhagic and thrombotic phenotypes rapidly. Obstetricians have similar experience as CAC with pathologies such as preeclampsia, Hemolysis, Elevated Liver enzymes, and Low Platelets (HELLP) syndrome, morbidly adherent placenta (MAP) and other significant diseases associated with the peripartum state (145– 156). This spectrum of disorders in the peripartum patient allow pathophysiological comparison to the hemostatic derangement of CAC in the nonpregnant surgical patient (29, 157). In each disease entity, there is endotheliitis that results in an immuno-thrombotic crosstalk resulting in local thrombosis and/or hemorrhage at the level of the inflamed endothelium (17, 157). For example, prepartum patients with preeclampsia must be given thromboprophylaxis to prevent clotting, but during parturition, they are at higher risk for bleeding, and again return to a hypercoagulable state postpartum (157). In tandem, postpartum patients with preeclampsia or other underlying risk factors for a hypercoagulable state should be treated for at least six weeks with thromboprophylaxis postpartum (146). Hence, discussion of the obstetrical approaches to providing thromboprophylaxis serves as an ideal foundation for describing the other surgical disciplines with more straightforward pathophysiological proclivities for the formation of perioperative clots. International guidelines for thromboprophylaxis for women who have undergone a C-section are heterogeneous in their recommendations regarding the timing and duration of thromboprophylaxis (146, 158). In the United States and other countries, thromboprophylaxis for women undergoing C-sections has been described by the Bunch et al. COVID-19 Immuno-Thrombosis and Surgery Frontiers in Surgery | www.frontiersin.org 9 2022 | Volume 9 | Article 889999

RkJQdWJsaXNoZXIy MTExMDc1