463

JULY 2022 | The Surgical Technologist | 319 Aspects of this management have been divided into three separate tiers of so-called ‘ramp up’ levels which determine the timing of surgery based on a combination of return to surgical case volume and acuity of indication for cardiothoracic surgery (141, 198). The Canadian Cardiothoracic Society has described the following criteria: For ramp up phase one where the surgical volume is increased 0-25%, the patients who should avoid surgery when possible include frail elderly patients (clinical frailty score > 4) and vulnerable co-morbid patients including those with renal insufficiency, poor ejection fractions, and advanced congestive heart failure. Overall, in a phase one scenario, the cardiothoracic surgeon should attempt to avoid complex procedures including re-operative surgery while prioritizing CABG, isolated valve procedures, and less complex procedures to maximize patient flow. There should be an emphasis on patients with aortic stenosis and coronary artery disease with prognostic benefit, such as critical aortic stenosis and left main coronary disease. In the ramp up phase two, where surgical volume is increased 25-50%, inpatient urgent and emergency surgeries should be continued with broadening inclusion of appropriately prioritized outpatients. Ramp up phase three occurs with 50-100% increase in capacity with a return to normal outpatient services while continuing to prioritize those as greatest risk such as asymptomatic and severe mitral regurgitation, atrial septal defect or patent foramen ovale surgery, and asymptomatic aneurysm with demonstrated stable size. In the thoracic surgery literature, a four-tier system of patient triage has been recommended by The Society of Thoracic Surgeons COVID-19 Task Force and the Workforce for Adult Cardiac and Vascular Surgery. For consistency here, we provide a three-tiered ESAS in Table 6. Systemic anticoagulation with intravenous unfractionated heparin should be provided for all patients with acute limb ischemia (ALI). The performance of endovascular or open procedures for ALI is a function of the acuity of the limb ischemia and its relation to the hemostatic derangement present in the COVID-19 patient. There is no high-quality data to suggest that either open or vascular intervention is the preferred treatment ALI. It has been noted that a heparin resistance is in acute COVID-19 illness is common, while at the same time, the capricious nature of the cytokine storm causes the COVID-19 patient to have abnormal coagulation patterns. This interference with therapeutic anticoagulation requires frequent monitoring of not only aPTT and anti-Xa levels, but also with VHAs (17, 20–23, 108). Plastic, Oculoplastic, & Reconstructive Surgery Similar guidelines based on the CMS and ESAS criteria have been adapted to the oculo/plastic and reconstructive procedures (199, 200). These guidelines are based on the three-tiered system which also incorporates the supply and demand for elective and acute surgeries and the acuity of the surgical intervention required. Of all specialties, the oculoplastic international societies have the most exhaustive list of procedures incorporated within the context of the three-tiered system since most of their surgeries are elective (201). These are summarized in Table 7 below. Of particular importance for this group of patients is the viability of microvascular flaps which, because of the hypercoagulability mediated by the immuno-thrombotic derangements that are part of CAC, require evaluation by the surgeon for the timing of surgery and the risk of ischemic flap loss. For example, criteria for the administration of continuous unfractionated heparin have been suggested for microvascular free flaps after head and neck cancer excision (202, 203). Recent publications have demonstrated the use of VHAs in guiding anticoagulation therapy to maintain vascular patency of microvascular vessels in flap surgery and reconstruction (204). TABLE 5 | Neurosurgery Elective Surgery Acuity Scale (ESAS). All candidates for surgery should be assessed for surgical fitness on an individual basis. This is an example ESAS and not comprehensive. Procedure acuity for the individual patient may shift among tiers based upon acuity of illness, severity of COVID-19 infection and coagulopathy, and hospital surgical capacity (135, 139). For specific length of operative delay, please see the text and Association of Anesthesiologists guidelines (13). Tier 1 Low Acuity Delay Tier 2 Intermediate Acuity Delay if possible Tier 3 High Acuity Do not delay Neurooncology Benign, asymptomatic intracranial tumors Benign, symptomatic intracranial tumors Malignant brain or spine tumors Spine Lumbar stenosis w/o FNDs Laminectomy discectomy w/o FNDs Kyphoplasty Laminectomy discectomy w/ FND Progressive cervical /thoracic myelopathy Cauda equina or conus medullaris syndrome Neurovascular AV malformation Unruptured aneurysm Ruptured aneurysm coiling or clip Chronic subdural hematoma Peripheral nerve Carpal tunnel release Peripheral nerve release Brachial plexus injury Other Microvascular decompression of cranial nerves DBS for Parkinson’s disease Refractory epilepsy Post-traumatic elevated ICP not controlled by conservative measures Abbreviations: DBS, deep brain stimulation; FND, focal neurologic deficit; ICP, intracranial pressure. Bunch et al. COVID-19 Immuno-Thrombosis and Surgery Frontiers in Surgery | www.frontiersin.org 15 2022 | Volume 9 | Article 889999

RkJQdWJsaXNoZXIy MTExMDc1