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SUMMARY

The goal of oncology is to provide the longest possible survival outcomes with the therapeutics that are
currently available without sacrificing patients’ quality of life. In lung cancer, several data points over a pa-
tient’s diagnostic and treatment course are relevant to optimizing outcomes in the form of precision medi-
cine, and artificial intelligence (AI) provides the opportunity to use available data from molecular information
to radiomics, in combination with patient and tumor characteristics, to help clinicians provide individualized
care. In doing so, AI can help create models to identify cancer early in diagnosis and deliver tailored therapy
on the basis of available information, both at the time of diagnosis and in real time as they are undergoing
treatment. The purpose of this review is to summarize the current literature in AI specific to lung cancer
and how it applies to the multidisciplinary team taking care of these complex patients.

INTRODUCTION

Medicine continues to strive for efficiency in the era of increasing

data available to the clinician to interpret and make appropriate

treatment decisions.With these increasing demands and the large

volumes of data generated from imaging and molecular testing,

streamlining the vast amount of clinical data is important to help

guide oncologists in the management of their patients. Over the

past decade, the applications of artificial intelligence (AI) have

grown dramatically, due in part to the advent of improved algo-

rithms, increased computational power, and expansion and orga-

nizational streamlining of available data. Big data has provided a

unique opportunity for data science and AI research to flourish

in the field of oncology.1 Oncology in general, and specifically

the management of lung cancer, has progressed significantly

over the past several decades, including improved imaging, stag-

ing techniques, and incorporation of patient-centered treatment

using molecular markers to guide therapy, all of which yield large

quantities of information that might guide management of future

patients.2,3 The large amount of data now gathered at the time

of diagnosis and during treatment can be vast and often difficult

to filter and interpret, which can represent a barrier to routine

incorporation into the thoracic oncology clinic. AI presents a

possible avenue for addressing this issue by offering improved

means to distill and interpret available data through overlapping

methodologies including machine learning (ML), neural networks

(NN), deep learning (DL), computer vision (CV), and natural lan-

guage processing (NLP).4,5

Lung cancer remains the leading cause of cancer-related mor-

tality worldwide.6 The complexity of personalized lung cancer

management, including screening, diagnosis, treatment, and

follow up, can be extensive, complicated by a range of relevant

data inclusive of clinical presentation, tumor stage, pathology,

radiologic features, tumor genomics, liquid biopsies, treatment

options, treatment response assessment, and overall outcomes.

Because of these complexities, the incorporation of AI has

become both necessary and exciting. There are currently several

U.S. Food andDrugAdministration (FDA) approvals for AI applica-

tions in clinical oncology, including lung cancer. In this review, we

summarize applications of AI to the overall management of lung

cancer. A general framework of how AI workflows might operate

in the lung cancer clinic is visualized in Figure 1. This included

data sources, data preparation (inclusive of data cleaning, data

harmonization, and feature selection, whereby data are made

suitable for entry into a model), model preparation, and finally, im-

plementation. Critically, to date external validation and clinical im-

plementation of lung cancer AI research is limited, and the studies

included in this review are no exception. In cases in which only in-

ternal validation is performed, reported performance metrics are

likely overly optimistic and may not validate to other datasets,

which limits their clinical utility. Thus, the potential for many of

the studies included in this review to actually influence clinical

care is limited. Therefore, this review primarily illustrates how

small-scale research has been done in lung cancer AI, which will

optimally provide a framework for future expanded research,

further validation, and actual incorporation into clinical workflows.
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AI DATA SOURCES

The common denominator among all AI research is a require-

ment for suitable quantities of training, testing and validation

data. The electronic medical record (EMR) offers a potential

source of data to feed into AI, as it contains information from

every aspect of patient care, including radiology, pathology,

and the treatment team. For modern research, the EMR almost

invariably is used for patient identification and initial source of

data. The difficulty lies in harmonization of data extraction and

types, and maintaining patient privacy, particularly when the

data are not stored in a discrete form that can be easily queried.

Nevertheless, several studies have provided approaches to pull-

ing data from the EMR to improve management of lung cancer

patients.

In one such study, Wang et al.7 developed a model identifying

patients at risk for new lung cancers using EMR data from the

Main Health Information Exchange network. They extracted

data from 873,598 patients in a retrospective cohort for model

training and 836,659 patients in a prospective cohort for valida-

tion. These data were fed into an extreme gradient boosting

(XGBoost) ML algorithm to predict the risk for developing lung

cancer within a year time frame. Themodel yielded an area under

the receiver operating characteristic curve (AUC) of 0.88 in the

test set. The goal of this model is to identify at-risk individuals

to facilitate more intensive screening and intervention, if needed.

In another study, Kehl et al.8 trained a NLP model using more

than 300,000 imaging reports from 16,780 patients to predict

cancer progression. They successfully created a model that

could predict patient prognosis and treatment change, with

concordance index of 0.76 and an AUC of 0.77. The authors sug-

gested that this application could be used to potentially identify

candidates for targeted clinical trials in real time. These studies

demonstrate the feasibility of automated data extraction from

the EMR toward AI applications, being able to generate large

quantities of data that would otherwise be prohibitive to collect

manually. However, it will still be critical to validate these ap-

proaches in clinical practice as these models deal with imbal-

anced data, low event rates, and contamination of data by

patients with pre-existing lung cancers. The next question is

how available data can be used by AI to improve lung cancer

management.

DIAGNOSTIC MODALITIES

Imaging
The use of AI to augment imaging technology has found success

in several disciplines, including computer-aided detection and

diagnosis (CAD), convolutional neural networks (CNNs), and ra-

diomics. CAD systems are typically standalone with a unified

goal of detection or diagnosis of disease.9 At its core, it is simply

trying to aid practitioners with identification of disease, with pri-

mary focus on that binary outcome. The field of radiomics seeks

to use medical imaging to generate high-dimensional quantita-

tive data, which can in turn be used for analysis that seeks to bet-

ter understand the underlying characteristics of disease.10

Radiomics is inherently meant to support the overall diagnosis

and management of patients at any point in the imaging work-

flow and can be combined with other patient characteristics to

produce powerful support tools, and therefore can be consid-

ered a natural extension of CAD. As opposed to radiomics,

where features are extracted and subsequently selected from

images and can then be used to predict outcomes when input

into tradition regression or ML models, CNNs are a subclass of

DL in which the images are input into the predictive algorithm

directly.11

In lung cancer, multiple imaging modalities are now used,

including magnetic resonance imaging (MRI), computed

Figure 1. Clinical AI workflow schema

Simplified schema of workflow for implementation of AI in lung cancer clinic on the basis of artificial intelligence best practices.
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tomography (CT), and positron emission tomography (PET),

providing valuable sources of data that can be analyzed using ra-

diomics, CAD, or CNNs.12 These data can be combined with

other factors such as gene expressions/mutations and mole-

cular signatures to refine prognostication. AI has been used to

augment image analysis at diagnosis and to assess/monitor

treatment response.

Screening

Lung cancer screening has expanded on the basis of data

demonstrating improvement in disease-specific mortality. The

National Lung Screening Trial (NLST) demonstrated that low-

dose computed tomography (LDCT) was associated with a

20% reduction in overall mortality in current and high-risk former

smokers. Currently, the U.S. Preventive Task Force supports

annual screening for lung cancer with LDCT for adults aged

50–80 years who have a 20 pack-year smoking history and

currently smoke or have quit within the past 15 years. Although

implementation of screening is key to improving lung cancer

mortality, it is not without its issues.

In particular, challenges arise because of issues with low

specificity, a known problem for cancer screening modalities,

particularly when relying on single-time-point imaging.13 Lung

cancer screening is non-specific and often identifies indetermi-

nate nodules, few of which are ultimately found to be malignant.

In NLST, of the nodules identified during screening, the majority

(>90%) were not malignant.13 There are currently no guidelines

to assist radiologists and pulmonologists in classifying small

indeterminate nodules as benign or malignant, and therefore

these nodules are monitored closely with serial CT scans and bi-

opsies if indicated. These additional CT scans and biopsies can

be anxiety provoking, while biopsies are also a non-trivial inva-

sive procedure with significant opportunity for morbidity.14

When the decision is made to monitor nodules with serial imag-

ing, there is limited guidance on the appropriate time for inter-

vention. The American College of Radiology Lung CT Screening

Reporting and Data System (Lung-RADS) provides recommen-

dations for workup and follow up of incidental lung nodules,

but these include both quantitative and qualitative measures,

with potential for variance in interpretation. In such scenarios,

AI may be able to better identify suspicious nodules worthy of

intervention on either screening or follow-up imaging.

AI has been applied to classify early cancers on imaging.When

radiologists are performing such a classification, they use imag-

ing features including density, shape, size, and surrounding

changes. Application of AI can potentially better use these char-

acteristics to create risk models. Some tools are designed to

augment radiologists’ classification abilities. CAD systems

have been applied to aid in finding nodules on CT imaging,

including the ability to identify nodules as small as 3 mm while

distinguishing nodules from normal pulmonary vascular anat-

omy.15–17 More specifically, CAD systems are classified into

two groups: computer-aided detection (CADe) systems and

computer-aided diagnosis (CADx) systems. CADe is used pri-

marily to aid in detecting the presence and location of lesions,

while the aim of CADx is to characterize lesions, including iden-

tification as malignant.18 Several of these systems have been

approved by the FDA.19 These systems use various ML algo-

rithms to allow automatic identification and segmentation of

lung nodules and normal anatomy on chest CT, thereby offering

both a ‘‘second opinion’’ to the radiologist’s judgment and a

gathering of quantitative metrics useful for monitoring patients.

Notably, these systems generally do not actually classify nod-

ules as benign or malignant but draw attention to potential re-

gions of interest.

Other approaches aim to improve classification of identified

nodules. One of the most critical AI (and, more specifically, DL)

algorithms for image analysis and associated classification is

CNNs.20 CNNs are inspired by biological neural networks, with

a goal of recognizing visual patterns by passing raw pixel data

through a series of transformations and filters. CNNs have

been used to classify nodules on screening LDCTs. In a study

by Paul et al.,21 CNNs were used on select participants from

NLST, achieving an accuracy of 89.45% and an AUC of 0.96.

In another study, Ardila et al.22 also analyzed LDCT scans from

NLST, achieving an AUC of 0.94. Importantly, their models’ pre-

dictions were compared with those of six radiologists. When

prior CT imaging was not available, the model outperformed all

radiologists and led to absolute reductions of 11% in false pos-

itives and 5% in false negatives. When prior imaging was avail-

able, performance was comparable to that of the radiologists.

Image analyses aren’t limited to identification of malignant

versus benign either. Chen et al.23 used radiomics to differentiate

between non-small-cell lung cancer (NSCLC) and peripherally

located small-cell lung cancer (SCLC) with an AUCof 0.93, which

further supports use of radiomics as a non-invasive approach for

early diagnosis and treatment of lung cancer. Overall, AI offers an

opportunity to improve accuracy of nodule classification, either

on initial screening or follow-up, and may even provide informa-

tion on tumor histology. Future work will need to clarify which

models/approaches yield the best performance and should be

incorporated into standard clinical practice, with a critical

consideration being avoiding false positives and overdiagnosis.

Outcome prediction

In addition to assisting with identifying lung cancers, AI can also

help predict oncologic outcomes overall and who will respond to

therapy. Predicting outcomes including locoregional and distant

recurrence, progression-free survival, and overall survival (OS)

can be challenging, given that factors that influence these out-

comes are multivariate. Imaging features are no doubt highly

relevant, but these must be combined with patient and tumor

characteristics to produce accurate radiomic models.

Presently, primary tumor staging is based on the American

Joint Committee on Cancer (AJCC) staging system, which

largely uses tumor size in its staging algorithm. Although tumor

size and response generally correlate with overall survival out-

comes, there is some level of subjectivity, and additional

information is critical. There are efforts to incorporate radiologic

findings with additional radiomic features to better assess tumor

characteristics. The Computer Aided Nodule Assessment and

Risk Yield (CANARY) tool is one such approach where radiomic

features were incorporated with imaging findings to predict a

subset of lung adenocarcinoma patients, diagnosed as part of

NLST, that have more aggressive disease.24

There are a number of studies that have attempted to combine

patient characteristics, genomic features, and radiomic changes

to predict for overall outcomes with some success.25,26 In a
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study by D’Antonoli et al.,25 the authors extracted radiomic fea-

tures from patients with resected NSCLC in order to predict risk

for recurrence. This study demonstrated how radiomics and clin-

ical information can synergize to improvemodels; when using tu-

mor-node-metastasis (TNM) stage or radiomics alone to predict

local recurrence, the model achieved AUCs of 0.58 and 0.73,

respectively. When combined, the AUC was improved to 0.75.

Lee et al.26 used radiomic features to predict OS in patients

with stage I NSCLC. In this study, combining radiomic and

genomic features led to a concordance index of 0.70, compared

with 0.62 using molecular features alone. Other similar studies in

patients with brain metastases have been performed using MRI

radiomics to predict survival and mutational status.27,28

Use of radiomics has not been limited to pre- or post-treat-

ment scans. In a study conducted by Buizza et al.,29 the authors

demonstrated that PET/CT radiomic features could help distin-

guish early responders from non-responders in patients under-

going definitive chemoradiation for lung cancer by obtaining

PET/CT prior to initiating treatment and during the first 3 weeks

of treatment. They entered available features into a support

vector machine (SVM) ML model intended to identify early re-

sponders, and achieved AUC as high as 0.98 and 0.93 on their

test data for patients treatedwith sequential and concurrent che-

moradiotherapy, respectively.

More advanced pipelines have also been used, which can

combine image analysis and classification into a single analysis

framework, rather than feeding extracted features into a predictive

model. In one such example, Xu et al.30 used CNNs and other DL

algorithms onCT imaging obtained prior to treatment and over the

course of follow-up to predict mortality risk in locally advanced

NSCLC. Each additional scan that was included in the model

increased model performance, with an AUC as high as 0.74. This

represents one of many approaches in which DL can incorporate

multi-time-point imaging to improve clinical outcome predication,

with minimal invasiveness and need for human input.

Other radiomics studies seek to identify suitable candidates

for available treatments. By itself, PD-L1 (programmed cell death

ligand 1) expression can predict for outcomes in lung cancer, yet

this is determined from a biopsy and may not represent the

heterogeneous microenvironment of lung cancer. Using AI to

identify radiomic signatures as surrogates for responsiveness

to PD-L1 directed therapies is an alternative. There is already ev-

idence suggesting certain radiomic features may predict for

those who will respond to immunotherapy.31,32

Response assessment

Although significant advances have been made in the manage-

ment of NSCLC, between 10% and 20% of patients with early-

stage NSCLC33 and approximately 66% of patients with

advanced NSCLC34 have disease progression or die within five

years of treatment. Given that certain progressive patients may

still be curable, there is a significant need for accurate assess-

ment of treatment response and identification of progression.

Traditionally and currently on most prospective clinical trials,

evaluation of tumor response relies upon RECIST (Response

Evaluation Criteria in Solid Tumors) and World Health Organiza-

tion (WHO) criteria,35 though in the era of immunotherapy im-

mune-related RECIST (irRECIST) is increasingly being used.36

These criteria, although useful, often times do not correlate

with treatment response and may lead to the interpretation of tu-

mor progression when in fact it is merely post-treatment

changes.37,38 This issue is amplified in patients treated with

immunotherapy and radiation; both are known to cause treat-

ment changes, inflammation, and pneumonitis, which can some-

times be difficult to distinguish from local progression.39,40 Ex-

amples of changes related to radiation, immunotherapy, and

progression, to illustrate their similarity, are visualized in Figure 2.

Distinguishing treatment changes from progression is chal-

lenging but critical, as it can lead to unnecessary tests including

invasive biopsies, early changes in therapy when it is not indi-

cated, and potentially disqualifying patients from an enrolled

clinical trial where they have limited options. AI and radiomics

in particular, have been demonstrated to refine response

assessment to improve patient management.

In a study by Mattonen et al.,37 the authors used CT texture

changes following stereotactic body radiation therapy (SBRT)

to predict recurrence and distinguish it from radiation-induced

lung injury (RILI). Their dataset included scans from 13 lesions

with moderate to severe RILI and 11 with recurrence. In this

sample, RECIST achieved an accuracy of 65.2%, with a false-

negative rate of 45.5% and a false-positive rate of 27.3%. In

comparison, using radiomics, accuracy was increased to 77%,

with an AUC as high as 0.81. Therefore, AI may be able to

improve ability to distinguish treatment-related changes from

progression, which is key for counseling of patients.

Pathology
Pathology plays a key role in the diagnosis and treatment of lung

cancer. Presently, pathology in lung cancer is more complex

than just grade and histology as it provides information on tumor

microenvironment, biomarker expression that help select treat-

ment and predict response (PD-L1), and genomic profiling to

identify potential targets that can be used to direct therapy

(epidermal growth factor receptor [EGFR], anaplastic lymphoma

kinase [ALK], Kirsten rat sarcoma viral oncogene [KRAS], and

others). AI/DL can potentially assist in interpreting pathologic tu-

mor characteristics.41

Histologic classification

Currently, CNNs are the most frequent model being applied for

tumor characterization, largely because of lending themselves

nicely to image analysis.42 At the most fundamental histologic

level, DL has been used to help in lung cancer diagnosis, differ-

entiating between non-malignant, adenocarcinoma and squa-

mous cell carcinoma. In a study by Coudray et al.,43 CNNs

were used to classify histology sample, achieving an AUC of

0.97. This study took classification a step further and sought to

predict for gene mutations. This classification is more nuanced,

so unsurprisingly the AUCs were lower at 0.73–0.86.

Immunohistochemistry is another field that is critical for subtyp-

ing of NSCLC via the use of molecular markers. These analyses

often require many stains, which can be difficult to perform when

there is limited tissue available. To address this problem, Koh

et al. useddecision treeandSVMMLclassifiers to aidwith subtyp-

ing, specifically in cases with equivocal findings.44 The accuracy

varied from 72.2% to 91.7% depending on the marker pattern,

but overall provided a framework for subtyping using just a three

marker panel if only small NSCLC biopsies are available.
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In a similar study by Wang et al., CNNs were used to classify

cell types in tumor microenvironment.45 The model, which they

named ConvPath, achieved an overall accuracy of 90.1%. The

authors postulate that understanding of the tumor microenviron-

ment may help better understand tumor progression and metas-

tasis. Although this information may be useful, it is potentially

prohibitive for pathologists to manually perform the required

classification, so having viable AI options is a necessity for ex-

panding research into the microenvironment.

Analysis of liquid biopsies

In addition to tissue biomarker analysis, liquid biopsies have

become more common. Liquid biopsy is analysis of any tumor-

derived product in the blood or serum. Compared with tissue bi-

opsies, which can assess the spatial heterogeneity of the tumor

on the basis of the location of the biopsy, it can capture temporal

heterogeneity by obtaining biopsies in the blood stream at

different times, which may be able to identify progression.46

This modality is useful in different settings. In early disease,

plasma next-generation sequencing (NGS) with large panels

can provide high sensitivity and specificity and may help distin-

guish benign from malignant nodules, guide neoadjuvant ther-

apy, and guide adjuvant therapy for surgically resectable

patients. Zhang et al.47 used synthetic minority oversampling

(SMOTE), a technique used to aid AI when the classification of

interest is in the minority and therefore liable to have its defining

feature that must be learned lost among the volume of themajor-

ity class, combined with random forests to identify lung cancer

using circulating microRNA (miRNA), achieving an AUC as high

as 0.99. Critically, this study used a case-control design with

samples not limited to early-stage disease, which likely inflated

performance. Nevertheless, research on the use of AI/ML in

analysis of liquid biopsies is needed; human analysis of such

multi-modal high-dimensional data is simply not possible, so

AI will play a key role in finding ways to improve sensitivity and

specificity of liquid biopsies, which will benefit patients by being

less invasive and catching cancers earlier.

Genetic mutations and gene expression

Although most of the current application of AI in lung cancer has

focused on immunohistochemistry there has been some incor-

poration of ML techniques in gene expression profile analysis.

For example, adenocarcinomas which present with mutations

that can be targeted with therapies is one area in which ML

has been applied to better understand genomic pathways and

potentially identify other actionable biomarkers downstream.48

With major improvements in genomic sequencing through com-

mercial platforms such as NGS, the presence of more data

points and pathways will improve ML analyses to aid clinicians

in selecting appropriate treatments and gaining better under-

standing of the tumor biology and potential outcomes including

risk for metastatic potential.49

In work by Cook et al.,50 a novel ML algorithm was used to

sub-classify lung adenocarcinoma and lung squamous cell car-

cinoma. This facilitated identification of novel mutations, such as

PIGX (an oncogenic driver in breast cancer) worthy of future

investigation. This research specifically harnessed a sub-type

of ML algorithms called unsupervised learning, that searches

for commonalities and patterns without assigning specific labels

as part of a classification problem, which is what enabled iden-

tification of potentially novel mutations.

TREATMENT

AI has also been applied to treatment decision making. A clinical

decision support system (CDSS) is a tool to assist physicians in

making clinical decisions on the basis of analyses of multiple

data points on a particular patient. Watson for Oncology (WFO)

is one example of a CDSS that has been applied to the treatment

management of lung cancer. A study comparing decisions made

by WFO to a multidisciplinary team found relatively high concor-

dance in recommendations for early stage and metastatic dis-

ease (92.4%–100%) but lower rates of concordance in stage II

or III (80.8%–84.6%).51 Therefore, although there is room for

improvement for decision support, these tools will be critical

for standardizing lung cancer treatment across available treat-

ment options and disciplines, thereby enhancing outcomes.

Medical oncology
Drug discovery

A primary area in which AI can benefit medical oncology is drug

development. A major challenge for the oncologic pharmaceu-

tical industry is optimization of drug development and in silico

drug screening. Drug development can be timely and costly,

not to mention the possibility that the required investment ulti-

mately proves futile because of lack of efficacy in human trials.

AI offers the potential to support drug development in two

ways: it can be used to screen previously developed drugs for

new uses,52 and it can help identify potential drug candidates

worthy of further investigation before undergoing years of

research requiringmillions of dollars.53 In work by Li et al.,54 tran-

scriptomic and chemical structures were used as inputs into a

DL algorithm intended for drug repurposing. Using this algo-

rithm, pimozide, an anti-dyskinesia agent previously used for

Tourette’s disorder, was identified as a strong candidate for

treatment of NSCLC. The authors further validated these finding

Figure 2. Examples of radiographic changes

that may benefit from being distinguished

using artificial intelligence

Representative non-contrast computed tomogra-

phy slices showing patients who experienced

(A) radiation pneumonitis, (B) immunotherapy

pneumonitis, or (C) disease progression following

cancer treatment are shown. The similarity of these

images exemplify an area in which artificial intelli-

gence might help providers distinguish subtle dif-

ferences in imaging to make the correct diagnosis.
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in in vitro experiments, demonstrating efficacy against certain

NSCLC cell lines.

Response prediction

Work is ongoing to use AI tools to predict response to immune

checkpoint inhibitors and targeted therapies. For immunotherapy,

Charoentong et al.55 performed a pan-cancer, inclusive of lung

cancer, immunogenomic ML analysis to predict response to

checkpoint inhibitors. They used this approach to generate an

‘‘immunophenoscore,’’ which outperformed PD-L1 expression

for predicting response to immunotherapies in certain histologies.

ML applications in predicting failure have also been applied to pa-

tients undergoing targeted therapies. Kureshi et al.56 applied ML,

specifically SVM and decision tree classifiers, to evaluate multiple

factors in predicting tumor response in EGFR positive NSCLC

receiving erlotinib or gefitinib and found a predictive accuracy of

the data-driven decision support model of 76% and an AUC of

0.76. Overall, these data support use of AI to optimize systemic

therapy selection in lung cancer, where the range of options,

particularly in the metastatic setting, is quite broad.

Radiation oncology
Treatment planning

In addition to aiding with interventions that improve outcomes, AI

might also be used to streamline treatment workflows. Radiation

oncology in particular is an example of a field that is resource

intensive. Treatment of patients requires, at minimum, CT simu-

lation, delineation of organs at risk (OARs), definition of target

volumes, treatment plan optimization, plan evaluation, and qual-

ity assurance. Many of these tasks are repetitive, and their

burden could be reduced by AI, leading to shorter durations be-

tween consultation and delivery of the first fraction.

Wu et al.57 reported on AAR-RT, a system designed to auto-

matically contour OARS on CT images, a key and often time-

consuming step in the radiation treatment process. The authors

specifically focused on treatment of patients with head and neck

and thoracic malignancies, which require careful definition of

normal organs to permit optimization that avoids excessive

toxicity. The framework enabled improved structure recognition

and subsequent delineation. Example auto-contoured OARs are

visualized in Figure 3. Other work has aimed to automate the

planning process once OARs and targets have been drawn.

Planning is inherently an optimization problem, which lends itself

nicely to automation. Zhang et al.58 reported on an automatic

planning algorithm for lung intensity-modulated radiation ther-

apy. When auto-generated plans were compared with plans

generated by experienced medical dosimetrists, they consis-

tently have equivalent or improved performance with regard to

target coverage, OAR sparing, and overall quality. Last, Wall

et al.59 reported on the use of ML models for predicting quality

assurance outcomes. They evaluated multiple different types

of ML algorithms, ultimately leading to selection of a SVM, with

a mean absolute error of 3.85%. The authors asserted that

such work could help guide the plan optimization process to

avoid issues that would decrease quality assurance pass rates.

In total, these are all steps in the automation of radiotherapy

planning which will reduce time required to optimally plan a

case from about a week to a day or less.

Treatment selection

Another scenario in which AI has been shown to improve lung

cancer radiotherapy is helping with treatment selection. Although

there are certain cases in which radiation is clearly indicated,

other cases are borderline. For example, two recently published

randomized controlled trials have called into question routine

postoperative radiotherapy (PORT) in patientswith completely re-

sected N2 NSCLC.60,61 However, certain populations may still

benefit from treatment. In work by Zarinshenas et al.,62 an

XGBoost ML model was used to identify patients who may still

benefit from PORT on the basis of nodal burden. The model iden-

tified positive nodal count thresholds ofR3 and positive nodal ra-

tios of R0.34 as predictive of benefit from PORT, achieving a

concordance index of 0.65, outperforming Cox regression.

Surgery
Decision making

Surgical resection is standard of care for management of local-

ized lung cancer.12 Extent of surgery depends on several factors,

including disease progression and patient eligibility. When

possible, lobectomy has been established as standard, with

improved disease control and/or survival compared with smaller

wedge resections63 and larger pneumonectomies.64 Further-

more, the mortality rate of lobectomies is 2.3% compared with

6.8% with pneumonectomies.65 However, not every patient will

be a candidate for lobectomy, because of factors such as med-

ical history, smoking history, and lung function. AI offers an op-

portunity to better risk-stratify patients to come up with an

optimal treatment plan, which might also include no surgery at

all if risk is too high.

Santos-Garcia et al.66 used a NN to predict postoperative car-

dio-respiratory in patients with NSCLC. Their model achieved an

AUC of 0.98, thereby proving to be a valuable tool for avoiding

unnecessary toxicity. Similarly, in a study by Esteva et al.,67

NNs were used to estimate postoperative prognosis and major

postoperative complications using clinical and laboratory vari-

ables from a training set of 113 patients. The model had 100%

testing set sensitivity and specificity at correctly classifying risk

for mortality and postoperative morbidity in a test set of 28

patients.

Specific data critical to assessing candidacy for surgery is pul-

monary function tests (PFTs), as patients with poor lung function

Figure 3. Examples of auto-contoured organs at risk for stage III

lung cancer

Normal organ image segmentation outlines (lung [orange], spinal cord [red],

brachial plexus [yellow], esophagus [green], and trachea [blue]) on a computed

tomographic scan generated using an in-house deep learning algorithm de-

signed to streamline radiation treatment workflows.
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at baseline may be unable to sustain sufficient function with a

portion of their lung removed. In a study by Topalovic et al.,68

PFTs were interpreted by a decision tree ML framework and pul-

monologists, and the resulting interpretations were compared

with guideline gold standards. A total of 120 pulmonologists

each evaluated 50 cases. The pulmonologist interpretation

matched the guideline interpretation 74.4%of the time (interrater

variability 0.67), leading to diagnosis of the correct underlying

pathology 45%of the time (interrater variability 0.35). In contrast,

the ML model, developed and validated on the 1,500 historical

patient cases, matched guidelines 100% of the time, yielding

the correct diagnosis in 82% of the time. Thus, by being able

to predict underlying patient factors, AI can help predict

morbidity and mortality, thereby leading to improvements in

treatment selection.

Robotic surgery

Modern thoracic surgery regularly makes use of robotic surgical

systems, which can facilitate minimally invasive procedures with

decreased surgical trauma.69 Robotic-assisted surgical systems

are by definition not AI, as they are not programmed but serve as

extensions of the surgeon, thereby improving precision. Howev-

er, there may be a role for robotic systems to gain autonomy to

perform certain repetitive tasks. In one such example, Shade-

man et al.70 reported on a ‘‘smart tissue autonomous robot’’

(STAR) that uses AI to optimize and automate complex surgery

planning. The authors compared anastomosis metrics between

the STAR system, manual laparoscopic surgery, and standard

robotic-assisted surgery. STAR outperformed both alternative

techniques with respect to suture consistency, leakage, number

of mistakes, completion time, and lumen reduction. Therefore,

incorporation of AI into actual surgical is potentially feasible

and may improve quality, though this testing was performed in

pigs and is not part of routine clinical care. There are still signif-

icant unknowns with regard to legal, regulatory, and ethical

considerations, and there are currently no FDA approvals for

autonomous surgery.71 Therefore the impact of AI in this field

of lung cancer is limited but might prove helpful in the future

when surgeons seek no operate around complicated thoracic

anatomy.

Network meta-analysis
A rapidly emerging area in lung cancer research, with implica-

tions for all treatmentmodalities, are Bayesian networkmeta-an-

alyses. Traditional systematic meta-analysis aims to pool clinical

trial data to compare two interventions. However, as is

commonly the case when managing lung cancer in the modern

era, there might be more than two options, in which case tradi-

tional meta-analysis is insufficient. Network analysis helps

address this problem through one of two approaches: strictly in-

direct treatment comparison through a shared comparator or a

mixed approach where both indirect comparisons and direct

comparisons from available trial are used.72 A downside of

some network meta-analysis approaches is that they do not pro-

duce forest plots, which practitioners are accustomed to inter-

preting, and therefore results may be difficult to understand.73

The Bayesian network approach helps address this issue by pro-

ducing novel outputs such as treatment rankings, odds ratios,

and probability distributions.74 Several such studies have been

performed in lung cancer, including evaluating safety and effi-

cacy of bevacizumab biosimilars,75 determining optimal plat-

inum-based chemotherapy for early-stage resected NSCLC,76

how smoking status influences effect of targeted therapy,77

and choice of first-line treatment for patients on the basis of

PD-L1 expression.78–80

CURRENT CHALLENGES TO APPLYING AI TO LUNG
CANCER

Although AI is clearly an invaluable tool to the multidisciplinary

lung cancer care team, several barriers remain to its widespread

implementation and availability. First, AI relies heavily on data,

and data acquisition and organization continue to be a challenge

that AI will need to overcome. Efforts will optimally focus onways

of efficiently extracting EMRdata to create large databases for AI

research. Sample size is important in AI research, as it must be

sufficiently large to train, test and validate models. Presently,

most outcomes-based research studies include relatively small

numbers of patients (between tens and hundreds of patients)

that are somewhat heterogeneous as far as patient demo-

graphics, genomics, and imaging features are concerned.

Though it is sometimes possible to perform AI analyses on data-

sets of that size, sample sizes in the thousandsmight be required

for many applications.81 Otherwise, models may be inaccurate,

poorly generalizable, and not applicable or reproducible to clin-

ical outcomes. Additionally, although the EMR system has pro-

vided the opportunity to extract data into models for AI-based

research, a number of variables are recorded as free text, which

cannot directly be extracted for data analysis.

Another challenging aspect of AI research is reproducibility.

Although many institutions are performing research in AI, meth-

odology and reproducibility vary and are somewhat at the

discretion of the researcher. It has therefore become critical

that publications of AI-based research include detailed descrip-

tions of methodology and data curation in order to verify the ac-

curacy and interpretation of the data being presented. An

approach to improve reproducibility is to have reporting stan-

dards, which has been published for radiomics.82 This challenge

is exemplified by the fact that the studies in this review almost

exclusively lack external validation or prospective evaluation,

which may explain their excellent (and potentially overly opti-

mistic) performance. Thus, although these studies are hypothe-

sis generating and lay a solid foundation, significant future work

is required before widespread clinical implementation is feasible.

Moreover, much of AI-based research has focused on retro-

spectively analyzing patterns and outcomes, but there are few

studies that have actually applied AI-based interventions to pa-

tient care and compared them with the gold standard of patient

care. Future studies are needed to compare the effects of AI-

based interventions to standard of care on patient outcomes.

AI has the potential to incorporate thousands of variables and

features, including patient demographics, tumor characteristics,

genomic and radiomic features, treatment details such systemic

therapy agents and radiation dose to tumor and organs at risk, to

predict outcomes for lung cancer patients and potentially guide

treatment decisions. However, these datasets currently are

often stored in institutional repositories. In order to ensure
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reproducibility and permit validation of results, datasets will need

to be more widely available. Centralized repositories will also be

required for multimodality integration, essential for unifying avail-

able sources of information to generate the best possible

models.83

A related but distinct challenge will be ensuring appropriate

study designs. One aspect of this is related to sample size;

included in the study design, there must be a means of model

testing and validation, whether through a hold-out dataset, an

external dataset, or at the very least via statistical resampling.

Ignoring such considerations will lead to the models that overfit

the training data and/or introduce bias, and would not generalize

to clinical practice.84 This is emphasized in Figure 1.

It is also critical to acknowledge ethical concerns of imple-

menting AI/ML in the clinic.85 How should the risks and benefits

of implementing AI in the clinic be balanced? Although AI may

improve health care delivery efficiency and efficiency there are

concerns for patient confidentiality and autonomy as their data

are used to create or evaluate models that make decisions. Do

patients need to consent to AI tools being used to guide their

care? This is especially relevant when one considers that models

are certainly fallible, with major ramifications for patient out-

comes if they are incorrect. Furthermore, where does liability

lie when such shortcomings adversely affect patient care? An-

swers to these questions are still in their infancy, but will not

doubt need to be explored as the role of AI/ML expands in the

lung cancer clinic.

Last, adoption of AI must also overcome resistance to its

inherent complexity. For example, the output of widely used

Cox proportional hazards models are ubiquitous in oncology

research and relatively simple to understand. In contrast, radio-

mic features or the DL models in general are not nearly as intui-

tive. This represents a barrier to implementation of AI in the clinic,

because of lack of understandability or trust, regardless of

demonstrated efficacy. There are solutions to this. First, there

are frameworks in a discipline designated ‘‘explainable AI’’

(XAI), which seek to visualize the inner working of the ‘‘black

box’’ that is AI.86,87 Popular frameworks include locally interpret-

able model agnostic explanations (LIME) and shapley additive

explanation (SHAP), which provide estimates of how model fea-

tures lead to ultimate model predictions, similar to how regres-

sion coefficients are used in standard regression models.88

Alternatively, the field can seek to use inherently high-interpret-

ability methods when possible without sacrificing predictive per-

formance. These include ‘‘simple’’ decision trees, regression

models such as least absolute shrinkage and selection operator

(LASSO), and Bayesian probabilistic causal networks, though

these are not applicable to all clinical problems/models.89–95

FUTURE DIRECTIONS

The above limitations need to be addressed prior to general

incorporation of AI in the lung cancer clinic. We must work as a

field to build robust, accessible, and validated models designed

to improve patient care. With that accomplished, AI provides a

major avenue for personalized medicine in lung cancer. Logical

next steps include efforts to improve sample sizes and data

availability. Examples of such initiatives are the Cancer Imaging

Archive and The Cancer Genome Atlas.96,97 If researchers have

access to large, centralized sources of data, many of the chal-

lenges associated with adoption of AI will be addressed; sample

sizes will increase, enabling appropriately sized training and

testing datasets. The importance of this is emphasized by inclu-

sion in Figure 1. Furthermore, working with a single dataset also

allows researchers to ensure reproducibility, increase collabora-

tion, and overall maximize patient benefit. Obstacles to this effort

include data sharing difficulties, challenges in pooling diverse

data, and significant effort requirements. In addition to structural

improvements, there will be algorithmic improvements as well.

Computational power is always increasing, and as research in

AI for lung cancer continues to grow, so too will performance

metrics and efficiency, both of which will stimulate applicability

to the clinic. However, at the same time it is also critical that

we not make AI out to be something it is not; it is not a silver bul-

let, with many challenges to translation to the lung cancer

clinic.98 Neither it is an absolutely autonomous, encapsulated

system, and nor should it be. We seek to develop systems

informed by all stakeholders, including patients, physicians,

and administrators, to ensure our models are useable, appli-

cable, and valid.

CONCLUSIONS

The present is an exciting time for lung cancer treatment, as the

available treatment options, and the precision with which we can

select them, have improved dramatically in recent years. Howev-

er, these increasingly tailored treatment options are accompa-

nied by a need for data to inform clinical decisions, and therefore

a need to be able to make sense of large volumes of data

throughout a hypothetical patients’ treatment course. The over-

arching field of AI, inclusive of ML, NNs, DL, NLP, XAI, and other

domains and methodologies, offers a promising avenue for

improving all aspects of lung cancer management with data-

driven approaches. Advances in radiomics allow us to derive

additional value from existing diagnostic imaging, whileML algo-

rithms help with optimizing treatment selection. Although there

are limitations to AI and challenges as discussed, with large da-

tabases and suitable platforms AI research will continue to grow

and become more reproducible, accurate, and applicable. With

the rise in AI-based research over the past decade and

increasing interest toward AI in the oncology community,

including young trainees, AI-based interventions in lung cancer

management will play a key role in the future.
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5. Presently, primary tumor staging is based 
on the AJCC staging system, which uses ___ 
in its staging algorithm.

a. Nodule size
b. Nodule density
c. Tumor size
d. Tumor shape

6. What makes liquid biopsies different than 
tissue biopsies?

a. It can capture temporal heterogeneity.
b. It can assess spatial heterogeneity.
c. It obtains biopsies in the blood stream.
d. Both a and c

7. AI in the future could help radiologists clas-
sify the following to create risk models:

a. Density
b. Shape
c. Size
d. All of the above

8. Currently, ___ are the most frequent model 
being applied for tumor characterization.

a. PD-L1
b. CNNs
c. ALK
d. KRAS

1. Liquid biopsy is analysis of any:
a. Serum
b. Blood
c. Tissue
d. Both a and b

2. What currently is the standard of care for man-
agement of localized lung cancer?

a. Surgical resection
b. Lobectomy
c. Resection followed by pneumonectomy
d. None of the above

3. One report details how a ____ robot used AI to 
optimize and automate complex surgery plan-
ning.

a. EMR
b. STAR
c. ITC
d. ADVIN

4. One of the most critical AI algorithms for image 
analysis and associated classification is:

a. AUCs
b. STARs
c. CNNs
d. LDCTs

9. What type of learning enabled identifi-
cation of potentially novel mutations of 
tumors?

a. Unsupervised learning
b. AI
c. SMOTE
d. DL

10. True or false: A novel ML algorithm was used 
to sub-classify lung adenocarcinoma and 
lung squamous cell carcinoma, which facili-
tated identification of novel mutations, 
such as PIGX.

a. True
b. False
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