463

| The Surgical Technologist | JULY 2022 322 study. Anaesthesia. (2021) 76(6):748–58. doi: 10.1111/anae.15458 11. El-Boghdadly K, Cook TM, Goodacre T, Kua J, Blake L, Denmark S, et al. SARSCoV-2 infection, COVID-19 and timing of elective surgery: A multidisciplinary consensus statement on behalf of the Association of Anaesthetists, the Centre for Peri-operative Care, the Federation of Surgical Specialty Associations, the Royal College of Anaesthetists and the Royal College of Surgeons of England. Anaesthesia. (2021) 76(7):940–6. doi: 10.1111/anae.15464 12. Groff D, Sun A, Ssentongo AE, Ba DM, Parsons N, Poudel GR, et al. Shortterm and Long-term Rates of Postacute Sequelae of SARS-CoV-2 Infection: A Systematic Review. JAMA Netw Open. (2021) 4(10):e2128568. doi: 10. 1001/jamanetworkopen.2021.28568 13. ASA and ASPF Joint Statement on Elective Surgery and Anesthesia for Patients after COVID-19 Infection: American Society of Anesthesiologists and Anesthesia Patient Safety Foundation; 2021. Available at: https://www. asahq.org/about-asa/newsroom/news-releases/2021/03/asa-and-apsf-jointstatement-on-elective-surgery-and-anesthesia-for-patients-after-covid-19infection-rv [updated March 9, 2021]. 14. Bui N, Coetzer M, Schenning KJ, O’Glasser AY. Preparing previously COVID-19-positive patients for elective surgery: a framework for preoperative evaluation. Perioper Med (Lond). (2021) 10(1):1. doi: 10. 1186/s13741-020-00172-2 15. Mankarious M, Massand S, Potochny J. Considerations for Elective Surgery in the Post-COVID-19 Patient. Aesthet Surg J. (2021) 41(10):Np1347–8. doi: 10.1093/asj/sjab214 16. Giannis D, Allen SL, Tsang J, Flint S, Pinhasov T, Williams S, et al. Postdischarge thromboembolic outcomes and mortality of hospitalized patients with COVID-19: the CORE-19 registry. Blood. (2021) 137 (20):2838–47. doi: 10.1182/blood.2020010529 17. Bunch CM, Thomas AV, Stillson JE, Gillespie L, Khan RZ, Zackariya N, et al. Preventing Thrombohemorrhagic Complications of Heparinized COVID-19 Patients Using Adjunctive Thromboelastography: A Retrospective Study. J Clin Med. (2021) 10(14):3097. doi: 10.3390/ jcm10143097 18. Tenforde MW, Kim SS, Lindsell CJ, Billig Rose E, Shapiro NI, Files DC, et al. Symptom Duration and Risk Factors for Delayed Return to Usual Health Among Outpatients with COVID-19 in a Multistate Health Care Systems Network - United States, March-June 2020. MMWR Morb Mortal Wkly Rep. (2020) 69(30):993–8. doi: 10.15585/mmwr.mm6930e1 19. Carfì A, Bernabei R, Landi F. Persistent Symptoms in Patients After Acute COVID-19. JAMA. (2020) 324(6):603–5. doi: 10.1001/jama.2020.12603 20. Bareille M, Hardy M, Douxfils J, Roullet S, Lasne D, Levy JH, et al. Viscoelastometric Testing to Assess Hemostasis of COVID-19: A Systematic Review. J Clin Med. (2021) 10(8):1740. doi: 10.3390/ jcm10081740 21. Hartmann J, Ergang A, Mason D, Dias JD. The Role of TEG Analysis in Patients with COVID-19-Associated Coagulopathy: A Systematic Review. Diagnostics. (2021) 11(2):172. doi: 10.3390/diagnostics11020172 22. Görlinger K, Almutawah H, Almutawaa F, Alwabari M, Alsultan Z, Almajed J, et al. The role of rotational thromboelastometry during the COVID-19 pandemic: a narrative review. Korean J Anesthesiol. (2021) 74(2):91. doi: 10.4097/kja.21006 23. Mortus JR, Manek SE, Brubaker LS, Loor M, Cruz MA, Trautner BW, et al. Thromboelastographic results and hypercoagulability syndrome in patients with coronavirus disease 2019 who are critically ill. JAMA network open. (2020) 3(6):e2011192. doi: 10.1001/jamanetworkopen.2020.11192 24. Kreuziger LB, Lee AYY, Garcia D, DeSancho M, Connors JM. COVID-19 and VTE/Anticoagulation: Frequently Asked Questions American Society of Hematology website: American Society of Hematology; 2022. Available at: https://www.hematology.org/covid-19/covid-19-and-vte-anticoagulation [updated February 2, 2022]. 25. Moores LK, Tritschler T, Brosnahan S, Carrier M, Collen JF, Doerschug K, et al. Thromboprophylaxis in Patients with COVID-19. A Brief Update to utm_medium=home&utm_campaign=highlights [updated February 24, 2022]. 27. Tu TM, Yi SJ, Koh JS, Saffari SE, Hoe RHM, Chen GJ, et al. Incidence of Cerebral Venous Thrombosis Following SARS-CoV-2 Infection vs mRNA SARS-CoV-2 Vaccination in Singapore. JAMA Netw Open. (2022) 5(3): e222940. doi: 10.1001/jamanetworkopen.2022.2940 28. Walsh MM, Khan R, Kwaan HC, Neal MD. Fibrinolysis Shutdown in COVID-19-Associated Coagulopathy: A Crosstalk among Immunity, Coagulation, and Specialists in Medicine and Surgery. J Am Coll Surg. (2021) 232(6):1003–1006. doi: 10.1016/j.jamcollsurg.2021.03.003 29. Meizoso JP, Moore HB, Moore EE. Fibrinolysis shutdown in COVID-19: clinical manifestations, molecular mechanisms, and therapeutic implications. J Am Coll Surg. (2021) 232(6):995–1003. doi: 10.1016/j. jamcollsurg.2021.02.019 30. Foley JH, Conway EM. Cross talk pathways between coagulation and inflammation. Circulation research. (2016) 118(9):1392–408. doi: 10.1161/ CIRCRESAHA.116.306853 31. Kwaan HC, Lindholm PF. The Central Role of Fibrinolytic Response in COVID-19-A Hematologist’s Perspective. Int J Mol Sci. (2021) 22(3):1283. doi: 10.3390/ijms22031283 32. Jayarangaiah A, Kariyanna PT, Chen X, Jayarangaiah A, Kumar A. COVID19-associated coagulopathy: an exacerbated immunothrombosis response. Clin Appl Thromb Hemost. (2020) 26:1076029620943293. doi: 10.1177/ 1076029620943293 33. Middeldorp S, Coppens M, van Haaps TF, Foppen M, Vlaar AP, Müller MCA, et al. Incidence of venous thromboembolism in hospitalized patients with COVID-19. J Thromb Haemost. (2020) 18(8):1995–2002. doi: 10.1111/jth.14888 34. Helms J, Tacquard C, Severac F, Leonard-Lorant I, Ohana M, Delabranche X, et al. High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Med. (2020) 46(6):1089–98. doi: 10.1007/s00134-020-06062-x 35. Nahum J, Morichau-Beauchant T, Daviaud F, Echegut P, Fichet J, Maillet JM, et al. Venous Thrombosis Among Critically Ill Patients With Coronavirus Disease 2019 (COVID-19). JAMA Netw Open. (2020) 3(5): e2010478. doi: 10.1001/jamanetworkopen.2020.10478 36. Klok FA, Kruip M, van der Meer NJM, Arbous MS, Gommers D, Kant KM, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res. (2020) 191:145–7. doi: 10.1016/j.thromres. 2020.04.013 37. Ribes A, Vardon-Bounes F, Mémier V, Poette M, Au-Duong J, Garcia C, et al. Thromboembolic events and Covid-19. Adv Biol Regul. (2020) 77:100735. doi: 10.1016/j.jbior.2020.100735 38. Libby P, Lüscher T. COVID-19 is, in the end, an endothelial disease. European heart journal. (2020) 41(32):3038–44. doi: 10.1093/eurheartj/ ehaa623 39. Mosleh W, Chen K, Pfau SE, Vashist A. Endotheliitis and Endothelial Dysfunction in Patients with COVID-19: Its Role in Thrombosis and Adverse Outcomes. J Clin Med. (2020) 9(6):1862. doi: 10.3390/jcm9061862 40. Pons S, Fodil S, Azoulay E, Zafrani L. The vascular endothelium: the cornerstone of organ dysfunction in severe SARS-CoV-2 infection. Crit Care. (2020) 24(1):353. doi: 10.1186/s13054-020-03062-7 41. Vrints CJM, Krychtiuk KA, Van Craenenbroeck EM, Segers VF, Price S, Heidbuchel H. Endothelialitis plays a central role in the pathophysiology of severe COVID-19 and its cardiovascular complications. Acta Cardiol. (2021) 76(2):109–24. doi: 10.1080/00015385.2020.1846921 42. Zhang J, Tecson KM, McCullough PA. Endothelial dysfunction contributes to COVID-19-associated vascular inflammation and coagulopathy. Rev Cardiovasc Med. (2020) 21(3):315–9. doi: 10.31083/j.rcm.2020.03.126 43. Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel AS, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. (2020) 395(10234):1417–8. doi: 10.1016/S0140-6736(20)30937-5 Frontiers in Surgery | www.frontiersin.org 18 2022 | Volume 9 | Article 889999 ini S, gery: 7(1): rgery ohort ARSinary entre s, the land. hortction: i: 10. a for ogists www. nt19ously for : 10. rgery 47–8. et al. lized 137 ya N, nized A 3390/ DC, Usual Care Morb e1 Acute 3 et al. 9: A 3390/ the CHEST Guideline and Expert Panel Report. Chest. (2022) 12:S00123692(22)00250-1. doi: 10.1016/j.chest.2022.02.006 26. National Institutes of Health. Therapeutic Management of Hospitalized Adults With COVID-19 National Institutes of Health; 2022. Available at: https://www.covid19treatmentguidelines.nih.gov/management/clinical-man agement/hospitalized-adults–therapeutic-management/?utm_source=site& utm_medium=home&utm_campaign=highlights [updated February 24, 2022]. 27. Tu TM, Yi SJ, Koh JS, Saffari SE, Hoe RHM, Chen GJ, et al. Incidence of Cerebral Venous Thrombosis Following SARS-CoV-2 Infection vs mRNA SARS-CoV-2 Vaccination in Singapore. JAMA Netw Open. (2022) 5(3): e222940. doi: 10.1001/jamanetworkopen.2022.2940 28. Walsh MM, Khan R, Kwaan HC, Neal MD. Fibrinolysis Shutdown in COVID-19-Associated Coagulopathy: A Crosstalk among Immunity, Coagulation, and Specialists in Medicine and Surgery. J Am Coll Surg. (2021) 232(6):1003–1006. doi: 10.1016/j.jamcollsurg.2021.03.003 29. Meizoso JP, Moore HB, Moore EE. Fibrinolysis shutdown in COVID-19: clinical manifestations, molecular mechanisms, and therapeutic implications. J Am Coll Surg. (2021) 232(6):995–1003. doi: 10.1016/j. jamcollsurg.2021.02.019 30. Foley JH, Conway EM. Cross talk pathways between coagulation and inflammation. Circulation research. (2016) 118(9):1392–408. doi: 10.1161/ CIRCRESAHA.116.306853 31. Kwaan HC, Lindholm PF. The Central Role of Fibrinolytic Response in COVID-19-A Hematologist’s Perspective. Int J Mol Sci. (2021) 22(3):1283. doi: 10.3390/ijms22031283 32. Jayarangaiah A, Kariyanna PT, Chen X, Jayarangaiah A, Kumar A. COVID19-associated coagulopathy: an exacerbated immunothrombosis response. Clin Appl Thromb Hemost. (2020) 26:1076029620943293. doi: 10.1177/ 1076029620943293 33. Middeldorp S, Coppens M, van Haaps TF, Foppen M, Vlaar AP, Müller MCA, et al. Incidence of venous thromboembolism in hospitalized patients with COVID-19. J Thromb Haemost. (2020) 18(8):1995–2002. doi: 10.1111/jth.14888 34. Helms J, Tacquard C, Severac F, Leonard-Lorant I, Ohana M, Delabranche X, et al. High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Med. (2020) 46(6):1089–98. doi: 10.1007/s00134-020-06062-x 35. Nahum J, Morichau-Beauchant T, Daviaud F, Echegut P, Fichet J, Maillet JM, et al. Venous Thrombosis Among Critically Ill Patients With Coronavirus Disease 2019 (COVID-19). JAMA Netw Open. (2020) 3(5): e2010478. doi: 10.1001/jamanetworkopen.2020.10478 36. Klok FA, Kruip M, van der Meer NJM, Arbous MS, Gommers D, Kant KM, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res. (2020) 191:145–7. doi: 10.1016/j.thromres. 2020.04.013 37. Ribes A, Vardon-Bounes F, Mémier V, Poette M, Au-Duong J, Garcia C, et al. Thromboembolic events and Covid-19. Adv Biol Regul. (2020) 77:100735. doi: 10.1016/j.jbior.2020.100735 COVID-19 Immuno-Thrombosis and Surgery Postdischarge thromboembolic outcomes and mortality of hospitalized patients with COVID-19: the CORE-19 registry. Blood. (2021) 137 (20):2838–47. doi: 10.1182/blood.2020010529 17. Bunch CM, Thomas AV, Stillson JE, Gillespie L, Khan RZ, Zackariya N, et al. Pr venting Thrombohem rrhagic Complications of Hepariniz d COVID-19 Patients U ing Adjunctive Thrombo lastography: A Retrospective Study. J Clin Med. (2021) 0(1 ):3097. doi: 10.3390/ jcm10143097 18. Tenfor e MW, Kim SS, Lindsell CJ, Billig Rose E, Shapir NI, Files DC, et al. Symptom Duration and Risk Factors for Delay d Return t Usual Health Among Outpatients with COVID-19 in a Multistate Health Care Systems Network - United States, March-J n 2020. MMWR M b Mortal Wkly Rep. (2020) 69(30):993–8. doi: 10.15585/mmwr.mm6930e1 19. Carfì A, B rnabei R, Landi F. Persistent Symptoms in Patients After Acute COVID-19. JAMA. (2020) 324(6):603–5. doi: 10.1 01/j ma.2020.12603 20. Bareille M, Hardy M, Douxfils J, Roullet S, L sne D, Levy JH, et al. Viscoelastometric Testing to Assess Hemostasis of COVID-19: A Systematic Review. J Cli Med. (2021) 10(8):1740. doi: 10.3390/ jcm10081740 21. Hartm nn J, Ergang A, Mas n D, Dias JD. The Role of TEG Analysis in Patients with COVID 19-Associated Coagulopathy: A Systematic Review. Diagnostics. (2021) 11(2):172. doi: 10.3390/diagnostics11020172 22. Görlinger K, Almutawah H, Almutawaa F, Alwabari M, Alsultan Z, Almajed J, et al. The role of rotational thromboelastometry during the COVID-19 p demic: a narrative review. Korean J Anesthesiol. (2021) 74(2):91. doi: 10.4097/kja.21006 23. Mortus JR, Manek SE, Brubak r LS, Loor M, Cruz MA, Trautner BW, et al. Thromboelastographic resu ts and hypercoagulability syndrome in patients with coronavirus disease 2019 who are crit cally ill. JAMA netwo k open. (2020) 3(6):e2011192. doi: 10.1001/j manetworkopen.2020.11192 24. Kreuziger LB, Le AYY, Garcia D, DeSancho M, Connors JM. COVID-19 and VTE/Anticoagulation: Frequently Asked Questions American Society of Hematology website: American Society of Hematology; 2022. Available at: https://www.hematology.org/covid-19/covid-19-and-vte-anticoagulation [updated February 2, 2022]. 25. Moores LK, Tritschler T, Brosnahan S, Carrier M, Collen JF, Doerschug K, et al. Thromb prophylaxis in P ients with COVID-19. A Brief Update to MCA, et al. Incidence of venous thromboembolism in hospitalized patients with COVID-19. J Thromb Haemost. (2020) 18(8):1995–2002. doi: 10.1111/jth.14888 34. Helms J, Tacquard C, Severac F, Leo ard-Lorant I, Ohana M, Delabranche X, et al. High risk of thrombosis in patients with sev re SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Med. (2020) 46(6):1089–98. doi: 10.1007/s00134-020-06062-x 35. Nahum J, Mori hau-Beauchant T, Daviaud F, Echegut P, Fichet J, Maillet JM, et al. Venous Thrombosis Among Critically Ill Patients With Coronavirus Disease 2019 (COVID-19). JAMA Netw Open. (2020) 3(5): e2010478. doi: 10.1001/jaman tworkopen.2020.10478 36. Klok FA, Kru p M, va der Me r NJM, Arbous MS, Gommers D, K nt KM, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID- 9. Thromb Res. (2020) 191:145–7. doi: 10.1016/j.thromres. 2020.04.013 37. Ribes A, Vardon-Bounes F, Mémier V, Poette M, Au-Duong J, Garcia C, et al. Thromboembolic events and Covid-19. Adv Biol Regul. (2020) 77:100735. doi: 10.1016/j.jbior.2020.100735 38. Libby P, Lüscher T. COVID-19 is, in the end, an endothelial disease. European heart journal. (2020) 41(32):3038–44. doi: 10.1093/eurheartj/ eha 623 39. Mosleh W, Chen K, Pfau SE, Vashist A. Endotheliitis and Endothelial Dysfunction in Patients with COVID-19: Its Role in Thr mbosis and Adverse Outcomes. J Clin Med. (2020) 9(6):1862. doi: 10.3390/jcm9061862 40. Pons S, Fodil S, Azoulay E, Zafr ni L. The vascular endothelium: the cornerstone of orga dysfunction in severe SARS-CoV-2 infection. Crit Care. (2020) 24(1):353. doi: 10.1186/s13054-020-03062-7 41. Vrints CJM, Krychtiuk KA, Van Craenenbroeck EM, Segers VF, Price S, Heidbuchel H. Endothelialitis plays a cent l role in the pathophysiology of severe COVID-19 and its cardiovascular complications. cta ardiol. (2021) 76(2):109–24. doi: 10.1080/00015385.2020.1846921 42. Zhang J, Tecson KM, McCullough PA. Endothelial dysfunction contributes to COVID-19-associated vascular inflammation and coagulopathy. Rev Cardiov sc M d. (2020) 21(3):315–9. d i: 10.31083/j.rcm.2020.03.126 43. Varg Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel AS, et al. Endothelial cell inf cti n and endotheliitis in COVID-19. Lancet. (2020) 395(10234):1417–8. doi: 10.1016/S0140-6736(20)30937-5 Frontiers in Surgery | www.frontiersin.org 18 2022 | Volume 9 | Article 889999 44. Ackermann M, Verleden SE, Kuehnel M, Haverich A, Welte T, Laenger F, et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N Engl J Med. (2020) 383(2):120–8. doi: 10.1056/ NEJMoa2015432 45. Stahl K, Gronski PA, Kiyan Y, Seeliger B, Bertram A, Pape T, et al. Injury to the Endothelial Glycocalyx in Critically Ill Patients with COVID-19. Am J Respir Crit Care Med. (2020) 202(8):1178–81. doi: 10.1164/rccm.2020072676LE 46. Whyte CS, Morrow GB, Mitchell JL, Chowdary P, Mutch NJ. Fibrinolytic abnormalities in acute respiratory distress syndrome (ARDS) and versatility of thrombolytic drugs to treat COVID-19. J Thro b Haemost. (2020) 18(7):1548–55. doi: 10.1111/jth.14872 47. Coccheri S. COVID-19: The crucial role of blood coagulation and fibrinolysis. Intern Emerg Med. (2020) 15(8):1369–73. doi: 10.1007/ s11739-020-02443-8 48. Vaughan DE, Lazos SA, Tong K. Angiotensin II regulates the expression of plasminogen activator inhibitor-1 in cultured endothelial cells. A potential link between the renin-angiotensin system and thrombosis. J Clin Invest. (1995) 95(3):995–1001. doi: 10.1172/JCI117809 49. Fujimoto H, Gabazza EC, Hataji O, Yuda H, D’Alessandro-Gabazza CN, Nakano M, et al. Thrombin-activatable fibrinolysis inhibitor and protein C inhibitor in interstitial lung disease. Am J Respir Crit Care Med. (2003) 167(12):1687–94. doi: 10.1164/rccm.200208-905OC 50. Blasi A, von Meijenfeldt FA, Adelmeijer J, Calvo A, Ibañez C, Perdomo J, et al. In vitro hypercoagulability and ongoing in vivo activation of coagulation and fibrinolysis in COVID-19 patients on anticoagulation. Journal of Thrombosis and Haemostasis. (2020) 18(10):2646–53. doi: 10. 1111/jth.15043 51. Hardy M, Michaux I, Lessire S, Douxfils J, Dogné J-M, Bareil M, et al. Prothrombotic disturbances of hemostasis of patients with severe COVID19: A prospective longitudinal observational study. Thromb Res. (2021) 197:20–3. doi: 10.1016/j.thromres.2020.10.025 52. Nougier C, Benoit R, Simon M, Desmurs-Clavel H, Marcotte G, Argaud L, et al. Hypofibrinolytic state and high thrombin generation may play a major role in SARS-COV2 associated thrombosis. J Thromb Haemost. (2020) 18(9):2215–9. doi: 10.1111/jth.15016 53. Weiss E, Roux O, Moyer J-D, Paugam-Burtz C, Boudaoud L, Ajzenberg N, et al. Fibrinolysis Resistance: A Potential Mechanism Underlying COVID19 Coagulopathy. Thromb Haemost. (2020) 120(9):1343–45. doi: 10.1055/ s-0040-1713637 54. Ranucci M, Sitzia C, Baryshnikova E, Di Dedda U, Cardani R, Martelli F, et al. Covid-19-Associated Coagulopathy: Biomarkers of Thrombin Generation and Fibrinolysis Leading the Outcome. J Clin Med. (2020) 9(11):3487. doi: 10.3390/jcm9113487 55. Tsantes AE, Tsantes AG, Kokoris SI, Bonovas S, Frantzeskaki F, Tsangaris I, et al. COVID-19 Infection-Related Coagulopathy and Viscoelastic Methods: A Paradigm for Their Clinical Utility in Critical Illness. Diagnostics (Basel). (2020) 10(10):817. doi: 10.3390/diagnostics10100817 56. Wright FL, Vogler TO, Moore EE, Moore HB, Wohlauer MV, Urban S, et al. Fibrinolysis Shutdown Correlation with Thromboembolic Events in Severe COVID-19 Infection. J Am Coll Surg. (2020) 231(2):193–203 e1. doi: 10. 1016/j.jamcollsurg.2020.05.007 57. Ibañez C, Perdomo J, Calvo A, Ferrando C, Reverter J, Tassies D, et al. High D dimers and low global fibrinolysis coexist in COVID19 patients: what is going on in there? Journal of thrombosis and thrombolysis. (2021) 51(2): 308–12. doi: 10.1007/s11239-020-02226-0 58. Creel-Bulos C, Sniecinski R. Fibrinolysis Shutdown and Thrombosis in a COVID-19 ICU. Shock. (2021) 55(6):845–6. doi: 10.1097/SHK. 0000000000001666 59. Moore HB, Moore EE. Temporal Changes in Fibrinolysis following Injury. Semin Thromb Hemost. (2020) 46(2):189–98. doi: 10.1055/s-0039-1701016 60. Moore H, Moore E, Gonzalez E, Chapman M, Chin T, Silliman C, et al. Hyperfibrinolysis, physiologic fibrinolysis, and fibrinolysis shutdown: the spectrum of postinjury fibrinolysis and relevance to antifibrinolytic therapy. J Trauma Acute Care Surg. (2014) 77(6):811–7; Discussion 7. doi: 10.1097/TA.0000000000000341 61. Moore HB, Moore EE, Liras IN, Gonzalez E, Harvin JA, Holcomb JB, et al. Acute fibrinolysis shutdown after injury occurs frequently and increases mortality: a multicenter evaluation of 2,540 severely injured patients. Journal of the American College of Surgeons. (2016) 222(4):347–55. doi: 10.1016/j.jamcollsurg.2016.01.006 62. Meizoso JP, Karcutskie CA, Ray JJ, Namias N, Schulman CI, Proctor KG. Persistent fibrinolysis shutdown is associated with increased mortality in severely injured trauma patients. Journal of the American College of Surgeons. (2017) 224(4):575–82. doi: 10.1016/j.jamcollsurg.2016.12.018 63. Bone RC, Francis PB, Pierce AK. Intravascular coagulation associated with the adult respiratory distress syndrome. Am J Med. (1976) 61(5):585–9. doi: 10.1016/0002-9343(76)90135-2 64. Ware LB. Pathophysiology of acute lung injury and the acute respiratory distress syndrome. Semin Respir Crit Care Med. (2006) 27(4):337–49. doi: 10.1055/s-2006-948288 65. Ware LB, Matthay MA. The acute respiratory distress syndrome. N Engl J Med. (2000) 342(18):1334–49. doi: 10.1056/NEJM200005043421806 66. Thompson BT, Chambers RC, Liu KD. Acute Respiratory Distress Syndrome. N Engl J Med. (2017) 377(6):562–72. doi: 10.1056/ NEJMra1608077 67. Tian S, Hu W, Niu L, Liu H, Xu H, Xiao SY. Pulmonary Pathology of EarlyPhase 2019 Novel Coronavirus (COVID-19) Pneumonia in Two Patients With Lung Cancer. J Thorac Oncol. (2020) 15(5):700–4. doi: 10.1016/j. jtho.2020.02.010 68. Carsana L, Sonzogni A, Nasr A, Rossi RS, Pellegrinelli A, Zerbi P, et al. Pulmonary post-mortem findings in a series of COVID-19 cases from northern Italy: a two-centre descriptive study. Lancet Infect Dis. (2020) 20(10):1135–40. doi: 10.1016/S1473-3099(20)30434-5 69. Lax SF, Skok K, Zechner P, Kessler HH, Kaufmann N, Koelblinger C, et al. Pulmonary Arterial Thrombosis in COVID-19 With Fatal Outcome : Results From a Prospective, Single-Center, Clinicopathologic Case Series. Ann Intern Med. (2020) 173(5):350–61. doi: 10.7326/M20-2566 70. Rapkiewicz AV, Mai X, Carsons SE, Pittaluga S, Kleiner DE, Berger JS, et al. Megakaryocytes and platelet-fibrin thrombi characterize multi-organ thrombosis at autopsy in COVID-19: A case series. EClinicalMedicine. (2020) 24:100434. doi: 10.1016/j.eclinm.2020.100434 71. Bastarache JA, Wang L, Geiser T, Wang Z, Albertine KH, Matthay MA, et al. The alveolar epithelium can initiate the extrinsic coagulation cascade through expression of tissue factor. Thorax. (2007) 62(7):608–16. doi: 10.1136/thx.2006.063305 72. Grau GE, de Moerloose P, Bulla O, Lou J, Lei Z, Reber G, et al. Haemostatic properties of human pulmonary and cerebral microvascular endothelial cells. Thromb Haemost. (1997) 77(3):585–90. doi: 10.1055/s-0038-1656009 73. MacLaren R, Stringer KA. Emerging role of anticoagulants and fibrinolytics in the treatment of acute respiratory distress syndrome. Pharmacotherapy. (2007) 27(6):860–73. doi: 10.1592/phco.27.6.860 74. Wool GD, Miller JL. The Impact of COVID-19 Disease on Platelets and Coagulation. Pathobiology. (2021) 88(1):15–27. doi: 10.1159/000512007 75. Zhang S, Liu Y, Wang X, Yang L, Li H, Wang Y, et al. SARS-CoV-2 binds platelet ACE2 to enhance thrombosis in COVID-19. J Hematol Oncol. (2020) 13(1):120. doi: 10.1186/s13045-020-00954-7 76. Hottz ED, Azevedo-Quintanilha IG, Palhinha L, Teixeira L, Barreto EA, Pão CRR, et al. Platelet activation and platelet-monocyte aggregate formation trigger tissue factor expression in patients with severe COVID-19. Blood. (2020) 136(11):1330–41. doi: 10.1182/blood.2020007252 77. Grobler C, Maphumulo SC, Grobbelaar LM, Bredenkamp JC, Laubscher GJ, Lourens PJ, et al. Covid-19: The Rollercoaster of Fibrin(Ogen), D-Dimer, Von Willebrand Factor, P-Selectin and Their Interactions with Endothelial Cells, Platelets and Erythrocytes. Int J Mol Sci. (2020) 21(14): 5168. doi: 10.3390/ijms21145168 78. Laubscher GJ, Lourens PJ, Venter C, Kell DB, Pretorius E. TEG(®), Microclot and Platelet Mapping for Guiding Early Management of Severe COVID-19 Coagulopathy. J Clin Med. (2021) 10(22):5381. doi: 10.3390/ jcm10225381 79. Bunch CM, Thomas AV, Stillson JE, Gillespie L, Lin KP, Speybroeck J, et al. Thromboelastography-Guided Anticoagulant Therapy for the Double Hazard of Thrombohemorrhagic Events in COVID-19: A Report of 3 Cases. Am J Case Rep. (2021) 22:e931080. doi: 10.12659/AJCR.931080 80. Thomas AV, Lin KP, Stillson JE, Bunch CM, Speybroeck J, Wiarda G, et al. A Case Series of Thromboelastography-Guided Anticoagulation in COVIDBunch et al. COVID-19 Immuno-Thrombosis and Surgery Frontiers in Surgery | www.frontiersin.org 19 2022 | Volume 9 | Article 889999 44. Ackermann M, Verleden SE, Kuehnel M, Haverich A, Welte T, Laenger F, et al. Pulmo ary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N Engl J Med. (2020) 383(2):120–8. doi: 10.1056/ NEJMoa2015432 45. Stahl K, Gronski PA, Kiyan Y, Seeliger B, Bertram A, Pape T, et al. Injury to the Endothelial Glycocalyx in Critically Ill Patients with COVID-19. Am J Respir Crit Care Med. (2020) (8):1178–81. doi: 10.1164/rccm.2020072676LE 46. Whyte CS, Morrow GB, Mitchell JL, Chowdary P, Mutch NJ. Fibrinolytic abnormalities in acute respiratory distress syndrome (ARDS) and versatility of thrombolytic drugs to treat COVID-19. J Thromb Haemost. (2020) 18(7):1548–55. doi: 10.1111/jth.14872 47. Coccheri S. COVID-19: The crucial role of blood coagulation and fibrinolysis. Intern Emerg Med. (2020) 15(8):1369–73. oi: 10.1007/ s11739-020-02443-8 48. Vaughan DE, Lazos SA, T ng K. Angiotensin II regulates the expression of plasminogen activator inhibitor-1 in cultured endothelial cells. A potential link between the renin-angiotensin system and thrombosis. J Clin Invest. (1995) 95(3):995–1001. doi: 10.1172/JCI117809 49. Fujimoto H, Gabazza EC, Hataji O, Yuda H, D’Alessandro-Gabazza CN, Nakano M, et al. Thrombin-activatable fibrinolysis inhibitor and protein C inhibitor in interstitial lung disease. A J Respir Crit Care Med. (2003) 167(12):1687–94. doi: 10.1 64/rccm.200208-905OC 50. Blasi A, von Meijenfeldt FA, Adelmeijer J, Calvo , Ibañez C, Perdomo J, et al. In vitr hypercoagulability and ongoing in vivo activation of coagulation and fibrinolysis in COVID-19 patients on anticoagulation. Journal of Thrombosis and Haemostasis. (2020) 18(10):2646–53. doi: 10. 1111/jth.15043 51. Hardy M, Michaux I, Lessire S, Douxfils J, Dogné J-M, Bareille M, et al. Prothrombotic disturbances of hemostasis of patients with severe COVID19: A prospective longitudinal observational study. Thromb Res. (2021) 197:20–3. doi: 10.1016/j.thromres.2020.10.025 52. Nougier C, Benoit R, Simon M, Desmurs-Clavel H, Marcotte G, Argaud L, et al. Hypofibrinolytic state and high thrombin generation may play a major role in SARS-COV2 associated thrombosis. J Thromb Haemost. (2020) 18(9):2215–9. doi: 10.1111/jth.15016 53. Weiss E, Roux O, Moyer J-D, Paugam-Burtz C, Boudaoud L, Ajzenberg N, et al. Fibrinolysis Resistance: A Potential Mechanism Underlying COVID19 Coagulopathy. Thromb Haemost. (2020) 120(9):1343–45. doi: 10.1055/ s-0040-1713637 54. Ranucci M, Sitzia C, Baryshnikova E, Di Dedda U, Cardani R, Martelli F, et al. Covid-19-Associated Coagulopathy: Biomarkers of Thrombin Generati n and Fibrinolysis Leadi g the Outcome. J Clin Med. (2020) 9(11):3487. doi: 10.3390/jcm9113487 55. Tsantes AE, Tsantes AG, Kokoris SI, Bonovas S, Frantzeskaki F, Tsangaris I, et al. COVID-19 Infection-Rela ed Coag lopathy and Viscoelastic Methods: A Paradigm for Their Clinical Utility in Critical Illness. Diagnostics (Basel). (2020) 10(10):817. doi: 10.3390/diagnostics10100817 56. Wright FL, Vogler TO, Moore EE, Moore HB, Wohlauer MV, Urban S, et al. Fibrinolysis Shutdown Correlation with Thromboembolic Events in Severe COVID-19 Infection. J Am Coll Surg. (2020) 231(2):193–203 e1. doi: 10. 1016/j.j mcollsurg.2020.05.007 57. Ibañez C, Perdomo J, Calvo A, Ferrando C, Reverter J, Tassies D, et al. High D dimers and low global fibrinolysis coexist in COVID19 patients: what is going on in there? Journal of thrombosis and thrombolysis. (2021) 51(2): 308–12. doi: 10.1007/s11239-020-02226-0 58. Creel-Bulos C, Sniecinski R. Fibrinolysis Shutdown and Thrombosis in a COVID-19 ICU Shock. (2021) 55(6):845–6. doi: 10.1097/SHK. 0000000000001666 59. Moore HB, Moore EE. Temporal C anges in Fibrinolysis following Injury. Semin Thromb Hemost. (2020) 46(2):189–98. doi: 10.1055/s-0039-1701 16 60. Moore H, Moore E, Gonzalez E, Chapman M, Chin T, Silliman C, et al. Hyperfibrin lysis, physiologic fibrinolysis, and fibrinolysis shutdown: the spectrum of postinjury fibrinolysis and relevance to antifibrinolytic therapy. J Tr uma Acute Car Surg. (2014) 77(6):811–7; Discussion 7. doi: 10.1097/TA.0000000000000341 61. Moore HB, Moore EE, Lira IN, Gonzalez E, Harvin JA, Holcomb JB, t al. Acute fibrinolysis shutdown after injury occurs frequently and increases mortality: a multicenter evaluation of 2,540 severely injured patients. Journal of the American College of Surgeons. (2016) 222(4):347–55. doi: 10.1016/j.jamcollsurg.2016.01.006 62. Meizoso JP, Karcutskie CA, Ray JJ, Namias N, Schulman CI, Proctor KG. Persistent fibrinolysis shutdown is associated with increased mortality in severely injured trauma patients. Journal of the American College of Surgeons. (2017) 224(4):575–82. doi: 10.1016/j.jamcollsurg.2016.12.018 63. Bone RC, Francis PB, Pierce AK. Intravascular coagulation associated with the adult respiratory distress syndrome. Am J Med. (1976) 61(5):585–9. doi: 10.1016/0002-9343(76)90135-2 64. Ware LB. Pathophysiology of acute lung injury and the acute respiratory distress syndrome. Semin Respir Crit Care Med. (2006) 27(4):337–49. doi: 10.1055/s-2006-948288 65. Ware LB, Matthay MA. The acute respiratory distress syndrome. N Engl J Med. (2000) 342(18):1334–49. doi: 10.1056/NEJM200005043421806 66. Thompson BT, Chambers RC, Liu KD. Acute Respiratory Distress Syndrome. N Engl J Med. (2017) 377(6):562–72. doi: 10.1056/ NEJMra1608077 67. Tian S, Hu W, Niu L, Liu H, Xu H, Xiao SY. Pulmonary Pathology of EarlyPhase 2019 Novel Coronavirus (COVID-19) Pneumonia in Two Patients With Lung Cancer. J Thorac Oncol. (2020) 15(5):700–4. doi: 10.1016/j. jtho.2020.02.010 68. Carsana L, Sonzogni A, Nasr A, Rossi RS, Pellegrinelli A, Zerbi P, et al. Pulmonary post-mortem findings in a series of COVID-19 cases from northern Italy: a two-centre descriptive study. Lancet Infect Dis. (2020) 20(10):1135–40. doi: 10.1016/S1473-3099(20)30434-5 69. Lax SF, Skok K, Zechner P, Kessler HH, Kaufmann N, Koelblinger C, et al. Pulmonary Arterial Thrombosis in COVID-19 With Fatal Outcome : Results From a Prospective, Single-Center, Clinicopathologic Case Series. Ann Intern Med. (2020) 173(5):350–61. doi: 10.7326/M20-2566 70. Rapk ewicz AV, Mai X, Carsons SE, Pittaluga S, Kleiner DE, Berger JS, et al. Megakaryocytes and platele -fibrin thrombi c aracterize multi-organ thrombo is at autopsy in COVID-19: A case series. EClinicalMedicine. (2020) 24:100434. doi: 10.1016/j.eclinm.2020.100434 71. Bastarache JA, Wang L, Geiser T, Wang Z, Albertine KH, Matthay MA, et al. The alveolar epithelium can initiate the extrinsic coagulation cascade through expression tissue factor. Thor x. (2007) 62(7):608–16. doi: 10.1136/thx.2006.063305 72. Grau GE, de Moerloose P, Bulla O, Lou J, Lei Z, Reber G, et al. Haemostatic properties of human pulmonary and cereb al microvascular endothelial cells. Thromb Haemost. (1997) 77(3):585–90. doi: 10.1 5 /s-0038-1 56009 73. MacLaren R, Stringer KA. Emerging role of anticoagulant and fibrinolytic in the treatment of acute respiratory distress syndrome. Pharmacotherapy. (2007) 27(6):860–73. doi: 10.1592/phco.27.6.860 74. Wool GD, Miller JL. The Impact of COVID-19 Disease on Platelets nd Coagulation. Pathobiology. (2021) 88(1):15–27. doi: 10.1159/000512007 75. Zhang S, Liu Y, Wang X, Yang L, Li H, Wang Y, et al. SARS-CoV-2 binds platelet ACE2 to enhance thrombosis in COVID-19. J Hematol Oncol. (2020) 13(1):120. doi: 10.1186/s13045-020-00954-7 76. Hottz ED, Azevedo-Quintanilha IG, Palhinha L, Teixeira L, Barreto EA, Pão CRR, t al. Platelet activation and platelet-monocyte aggrega e formation trigger tissue factor expression in patients with severe COVID-19. Blood. (2020) 136(11):1330–41. doi: 10.1182/blood.2020007252 77. Grobler C, Maphumulo SC, Gr bbelaar LM, Bredenkamp JC, Laubscher GJ, Lourens PJ, et l. Covid-19: The Rollercoaster of Fibrin(Ogen), D-Dimer, Von Willebrand Factor, P-Selectin and Their Interactions with Endothelial Cells, Platelets and Erythrocytes. Int J Mol Sci. (2020) 21(14): 5168. doi: 10.3390/ijms21145168 78. Laubscher GJ, Lourens PJ, Venter C, Kell DB, Pretorius E. TEG(®), Microclot and Platelet Mapping for Guiding Early Management of Severe COVID-19 Coagulopathy. J Clin Med. (2021) 10(22):5381. doi: 10.3390/ jcm10225381 79. Bunch CM, Thomas AV, Stillson JE, Gillespie L, Lin KP, Speybroeck J, et al. Thromboelastography-Guided Anticoagulant Therapy for the Double Hazard of Thr mbohemorrhagic Events in COVID-19: A Report of 3 Cases. Am J Case Rep. (2021) 22:e931080. doi: 10.12659/AJCR.931080 80. Thomas AV, Lin KP, Stillson JE, Bunch CM, Speybroeck J, Wiarda G, et al. A Case Series of Thromboelastography-Guided Anticoagulation in COVIDBunch et al. COVID-19 Immuno-Thrombosis and Surgery Frontiers in Surgery | www.frontiersin.org 19 2022 | Volume 9 | Article 889999 going on in there? Journal of thrombosis and thrombolysis. (2021) 51(2): 308–12. doi: 10.1007/s11239-020-02226-0 58. Creel-Bulos C, Sniecinski R. Fibrinolysis Shutdown and Thrombosis in a COVID-19 ICU. Shock. (2021) 55(6):845–6. doi: 10.1097/SHK. 0000000000001666 59. Moore HB, Moore EE. Temporal Changes in Fibrinolysis following Injury. Semin Thromb Hemost. (2020) 46(2):189–98. doi: 10.1055/s-0039-1701016 60. Moore H, Moore E, Gonzalez E, Chapman M, Chin T, Silliman C, et al. Hyperfibrinolysis, physiologic fibrinolysis, and fibrinolysis shutdown: the spectrum of postinjury fibrinolysis and relevance to antifibrinolytic therapy. J Trauma Acute Care Surg. (2014) 77(6):811–7; Discussion 7. doi: 10.1097/TA.0000000000000341 61. Moore HB, Moore EE, Liras IN, Gonzalez E, Harvin JA, Holcomb JB, et al. Acute fibrinolysis shutdown after injury occurs frequently and increases Frontiers in Surgery | www.frontiersin.org 19 19 Patients with Inherited and Acquired Hypercoagulable States. Case Rep Med. (2021) 2021:5568982. doi: 10.1155/ 021/5568982 81. Hulshof AM, Braeken DCW, Ghossein-Doha C, van Sante S, S ls JEM, Kuiper G, et al. Hem stasis and fibrinolysis in COVID-19 survivors 6 months after intensive care unit discharge. Res Pract Thromb Haemost. (2021) 5(6):e1 579. doi: 10.1002/rth2.12579 82. Mauro A, De Grazia F, Lenti MV, Penagini R, Frego R, Ardizzone S, et al. Upper gastroint stinal bleed ng in COVID-19 inpatients: Incidence and management in a mul center experience from Northern It ly. Clin Res Hepatol Gastroen erol. (2021) 45(3):101521. doi: 10.1016/j.clinre.2020.07. 025 83. Dogra S, Jain R, Cao M, Bilalog u S, Zagzag D, Hochman S, et al. Hemorrhagic stroke and anticoagulation in COVID-19. J Stroke Cerebrovasc Dis. (2020) 29(8):104984. doi: 10.1016/j.jstrokecerebrovasdis. 2020.104984 84. Al-Samkari H, Karp Leaf RS, Dzik WH, Carlson JC, Fogerty AE, Waheed A, et al. COVID and Coagulation: Bleeding and Thrombotic Manifestations of SARS-C V2 Infection. Blood. (2020) 136(4):489–500. doi: 10.1182/blood. 2020006520 85. Goligher EC, Bradbury CA, McVerry BJ, Lawler PR, Berger JS, Gong MN, et al. Therapeutic Anticoagu ation with Heparin in Critically Ill Pati nts with Covid-19. N Engl J Med. (2021) 385(9):777–89. doi: 10.1056/ NEJMoa2103417 86. Lawler PR, Goligher EC, Berger JS, Neal MD, McVerry BJ, Nicolau JC, et al. Therapeutic Anticoagulation with Heparin in Noncritically Ill Patients with Covid-19. N Engl J Med. (2021) 385(9):790–802. doi: 10.1056/ NEJMoa2105911 87. Dennis A, Wamil M, Alberts J, Oben J, Cuthbertson DJ, Wootton D, et al. Multiorgan impairment in low-risk individuals with post-COVID-19 syndrome: a prospective, community-based study. BMJ Open. (2021) 11(3):e048391. doi: 10.1136/bmjopen-2020-048391 88. Yan Z, Yang M, Lai CL. Long COVID-19 Syndrome: A Comprehensive 1 1 1 1 1 1 1 Bunch et al. 44. cker ann , erleden S , uehnel , averich , elte , Laenger F, et al. ul onary ascular ndothelialitis, hro bosis, and ngi genesis in ovid-19. ngl J ed. (2020) 383(2):120–8. doi: 10.1056/ J oa2015432 45. St hl K, Gronski , iyan , Seeliger , ertra , ape , t a Injury to the ndothelial lycocalyx in ritically Ill atients ith I -19. J espir rit are ed. (2020) 202(8):1178–81. doi: 10.1164/rcc .2020072676L 46. hyte S, orro , itchell JL, ho dary , utch J. Fibrinolytic abnor alities in acute respiratory distress syndro e ( S) and versatility of thro bolytic drugs to treat I -19. J hro ae ost. (2020) 18(7):1548–55. doi: 10.1111/jth.14872 47. occheri S. I -19: he crucial rol of blood coagulation and fibrinolysis. Intern erg ed. (2020) 15(8):1369–73. doi: 10.1007/ s11739-020-02443-8 48. aughan , Lazos S , ong . ngiotensin II regulates the expression of plas in gen activator inhibitor-1 in ultured endothelial cells. potential link bet een the reni -angiotensin syste and thro bosis. J lin Invest. (1995) 95(3):995–1001. doi: 10.1172/J I117809 49. Fuji oto , abazza , ataji , uda , ’ lessandro- abazza , Nakano , et al. hro bin-activatable fibrinolysis inhibitor and protein inhibitor in interstitial lung isease. J espir rit are ed. (2003) 167(12):1687–94. doi: 10.1164/rcc .200208-905 50. lasi , von ijenfeldt F , del eijer J, a vo , Ibañez , erdo o J, et al. In vitro hypercoagulability and ongoing in vivo activation of coagul tion and fibrinolysis in I -19 patients on anticoagulation. Journal of hro bosis and ae ostasis. (2020) 18(10):2646–53. doi: 10. 1111/jth.15043 51. ardy , ichaux I, Lessire S, ouxfils J, ogné J- , areille , et al. rothro botic disturbances of he ostasis of patients ith severe I - 19: prospective longitudinal observational study. hro b es. (2021) 197:20–3. doi: 10.1016/j.thro res.2020.10.025 52. ougier , enoit , Si on , es urs- lavel , arcotte , rgaud L, et al. ypofibrinolytic state and hig thro bin generation ay play a ajor role in S S- 2 associated thro bosis. J hro b ae ost. (2020) 18(9):2215–9. doi: 10.1111/jth.15016 53. eiss , ux , oyer J- , auga - urtz , oudaoud L, jzenberg , et al. Fibrinolysis esistance: otential echanis nderlying I - 19 oagulop thy. hro b ae ost. (2020) 120(9):1343–45. doi: 10.1055/ s-0040-1713637 54. anucci , Sitzia , aryshnikova , i edda , ardani , artelli F, et al. ovid-19- ssociated oagulopathy: io arkers of hro bin eneration and Fibrinolysis Leading the utco e. J lin ed. (2020) 9(11):3487. doi: 10.3390/jc 9113487 55. santes , santes , okoris SI, onovas S, Frantzeskaki F, sangaris I, et al. I -19 Infection- elated oagulopathy and iscoelastic ethods: aradig for heir linical tility in ritical Illness. iagnostics ( asel). (2020) 10(10):817. doi: 10.3390/diagnostics10100817 56. right FL, ogler , oore , oore , ohlauer , rban S, et al. Fibrinolysis Shutdo n orrelation ith hro boe bolic vents in Severe I -19 Infection. J oll Surg. (2020) 231(2):193–203 e1. doi: 10. 1016/j.ja collsurg.2020.05.007 57. Ibañez , erdo o J, alvo , Ferrando , everter J, assies , et al. igh D dimers and low global fibrinolysis coexist in I 19 patients: hat is going on in there? Journal of thro bosis and thro bolysis. (2021) 51(2): 308–12. doi: 10.1007/s11239-020-02226-0 58. reel- ulos , Sniecinski . Fibrinolysis Shutdo n and hro bosis in a I -19 I . Shock. (2021) 55(6):845–6. doi: 10.1097/S . 0000000000001666 59. oore , oore . e poral hanges in Fibrinolysis follo ing Injury. Se in hro b e ost. (2020) 46(2):189–98. doi: 10.1055/s-0039-1701016 60. oore , oore , onzalez , hap an , hin , Silli an , et al. Hyperfibrinolysis, physiologic fibrinolysis, and fibrinolysis shutdo n: the spectru of postinjury fibrinolysis and relevance to antifibrinolytic therapy. J rau a cute are Surg. (2014) 77(6):811–7; iscussion 7. doi: 10.1097/ .0000000000000341 61. oore , oore , Liras I , onzalez , arvin J , olco b J , et al. cute fibrinolysis shutdo n after injury occurs frequently and increases ortality: a ulticenter evaluation of 2,540 severely injured patients. Journal of the erican ollege of Surgeons. (2016) 222(4):347–55. doi: 10.1016/j.ja collsurg.2016.01.006 62. eizoso J , arcutskie , ay JJ, a ias , Schul an I, roctor . ersistent fibrinolysis shutdo n is associated ith increased ortality in severely injured trau a patients. Journal of t e erican ollege of Surgeons. (2017) 224(4):575–82. doi: 10.1016/j.ja collsurg.2016.12.018 63. one , Francis , ierce . I travascular coagulation associated ith the adult respiratory distress syndro e. J ed. (1976) 61(5):585–9. doi: 10.1016/0002-9343(76)90135-2 64. are L . at ophysiology f acute lung injury nd the acute respiratory distress syndro e. Se in espir rit are ed. (2006) 27(4):337–49. doi: 10.1055/s-2006-948288 65. are L , atthay . he cute respiratory distress syndro e. ngl J ed. (2000) 342(18):1334–49. doi: 10.1056/ J 200 0 04342180 66. ho pson , ha bers , Liu . cute espiratory istress Syndro e. ngl J ed. (2017) 377(6):562–72. doi: 10.1056/ J ra1 08077 67. ian S, u , iu L, Liu , u , iao S . ul onary athology of rlyhase 2019 ovel oronavirus ( I -19) neu onia in o atients ith Lung ancer. J horac ncol. (2020) 15(5):700–4. doi: 10.1016/j. jtho.2020.02.010 68. arsana L, Sonzogni , asr , ossi S, ellegrinelli , erbi , et al. ul onary post- orte findings in a series of I -19 cases fro northern Italy: a t o-centre descriptive study. Lancet Infect is. (2020) 20(10):1135–40. doi: 10.1016/S1473-3099(20)30434-5 69. Lax SF, Skok , echner , essler , auf ann , oelblinger , et al. ul onary rterial hro b sis in I -19 ith Fatal utco e : esults Fro rospective, Single- enter, linicopathologic ase Series. n Intern ed. (2020) 173(5):350–61. doi: 10.7326/ 20-2566 70. apkie icz , ai , arsons S , ittaluga S, leiner , erger JS, et al. egakaryocytes and platelet-fibrin thro bi characterize ulti-organ thro bosis at autopsy in I -19: case series. linical edicine. (2020) 24:100434. doi: 10.1016/j.eclin .2020.100434 71. astarache J , ang L, eiser , ang , lbertine , atthay , et al. he alveolar epitheliu can initiate the extrinsic coagulation cas ade through expression f tissue factor. horax. (2007) 62(7):608–16. doi: 10.1136/thx.2006.063305 72. rau , de oerl ose , ulla , Lou J, Lei , eber , et al. ae ostatic properties of hu an pul onary and cerebral icrovascular endothelial cells. hro b ae ost. (1997) 77(3):585–90. doi: 10.1055/s-0038-1656009 73. acLaren , Stringer . erging role of anticoagulants and fibrinolytics in the treat ent of acute respiratory distress syndro e. har acotherapy. (2007) 27(6):860–73. doi: 10.1592/phco.27.6.860 74. ool , iller JL. he I pact of I -19 isease on latelets and oagulation. athobiology. (2021) 88(1):15–27. doi: 10.1159/000512007 75. hang S, Liu , ang , ang L, Li , ang , et al. S S- o -2 binds platelet 2 to enhance thro bosis in I -19. J e atol ncol. (2020) 13(1):120. doi: 10.1186/s13045-020-00954-7 76. ottz , zevedo- uintanilha I , alhinha L, eixeira L, arreto , ão , et al. latelet activation and platelet- onocyte aggregate for ation trigger tissue factor expression in patients ith severe I -19. lood. (2020) 136(11):1330–41. doi: 10.1182/blood.2020007252 77. robler , aphu ulo S , robbelaar L , redenka p J , Laubscher J, Lourens J, et al. ovid-19: he ollercoaster of Fibrin( gen), - i er, on illebrand Factor, -Selectin and heir Interactions ith ndothelial ells, latelets and rythrocytes. Int J ol Sci. (2020) 21(14): 5168. doi: 10.3390/ij s21145168 78. Laubscher J, Lourens J, enter , ell , retorius . (®), icroclot and latelet apping for uiding arly anage ent of Severe I -19 oagulopathy. J lin ed. (2021) 10(22):5381. doi: 10.3390/ jc 10225381 79. unch , ho as , Stillson J , illespie L, Li , Speybroeck J, et al. hro boelastography- uided nticoagulant herapy for the ouble azard of hro bohe orrhagic vents in I -19: eport of 3 ases. J ase ep. (2021) 22:e931080. doi: 10.12659/ J .931080 80. ho as , Lin , Stillson J , unch , Speybroeck J, iarda , et al. ase Series of hro boelastography- uided nticoagulation in I - Bunch et al. COVID-19 Immuno-Thrombosis and Surgery Frontiers in urgery | .frontiersin.org 19 2022 | Volu e 9 | rticle 889999

RkJQdWJsaXNoZXIy MTExMDc1