463

| The Surgical Technologist | JULY 2022 324 C E E X A M Earn CE Credits at Home You will be awarded continuing education (CE) credits toward your recertification after reading the designated article and completing the test with a score of 70%or better. If youdonot pass the test, it will be returned along with your payment. Send the original answer sheet from the journal and make a copy for your records. If possible use a credit card (debit or credit) for payment. It is a faster option for processing of credits and offers more flexibility for correct payment. When submitting multiple tests, you do not need to submit a separate check for each journal test. You may submit multiple journal tests with one check or money order. Members this test is also available online at www.ast.org. No stamps or checks and it posts to your record automatically! Members: $6 per credit (per credit not per test) Nonmembers: $10 per credit (per credit not per test plus the $400 nonmember fee per submission) After your credits are processed, AST will send you a letter acknowledging the number of credits that were accepted. Members can also check your CE credit status online with your login information at www.ast.org. 3 WAYS TO SUBMIT YOUR CE CREDITS Mail to: AST, Member Services, 6 West Dry Creek Circle Ste 200, Littleton, CO 80120-8031 Fax CE credits to: 303-694-9169 E-mail scanned CE credits in PDF format to: [email protected] For questions please contact Member Services - [email protected] or 800-637-7433, option 3. Business hours: Mon-Fri, 8:00a.m. - 4:30 p.m., MT treatment and prevention of obstetric-associated venous thromboembolism. J Thromb Thrombolysis. (2016) 41(1):92–128. doi: 10.1007/ s11239-015-1309-0 164. Jering KS, Claggett BL, Cunningham JW, Rosenthal N, Vardeny O, Greene MF, et al. Clinical characteristics and outcomes of hospitalized women giving birth with and without COVID-19. JAMA Intern Med. (2021) 181 (5):714–7. doi: 10.1001/jamainternmed.2020.9241 165. Metz TD, Clifton RG, Hughes BL, Sandoval G, Saade GR, Grobman WA, et al. Disease severity and perinatal outcomes of pregnant patients with coronavirus disease 2019 (COVID-19). Obstet Gynecol. (2021) 137(4):571. doi: 10.1097/AOG.0000000000004339 166. Servante J, Swallow G, Thornton JG, Myers B, Munireddy S, Malinowski AK, et al. Haemostatic and thrombo-embolic complications in pregnant women with COVID-19: a systematic review and critical analysis. BMC Pregnancy Childbirth. (2021) 21(1):108. doi: 10.1186/s12884-021-03568-0 167. Wilson D, Cooke E, McNally M, Wilson H, Yeates A, Mollan R. Changes in coagulability as measured by thrombelastography following surgery for proximal femoral fracture. Injury. (2001) 32(10):765–70. doi: 10.1016/ S0020-1383(01)00139-5 168. Gary JL, Schneider PS, Galpin M, Radwan Z, Munz JW, Achor TS, et al. Can thrombelastography predict venous thromboembolic events in patients with severe extremity trauma? J Orthop Trauma. (2016) 30(6):294–8. doi: 10. 1097/BOT.0000000000000523 169. Brown W, Lunati M, Maceroli M, Ernst A, Staley C, Johnson R, et al. Ability of Thromboelastography to Detect Hypercoagulability: A Systematic Review and Meta-Analysis. J Orthop Trauma. (2020) 34(6):278–86. doi: 10.1097/ BOT.0000000000001714 170. Iyengar KP, Jain VK, Vaish A, Vaishya R, Maini L, Lal H. Post COVID-19: Planning strategies to resume orthopaedic surgery -challenges and considerations. J Clin Orthop Trauma. (2020) 11(Suppl 3):S291–5. doi: 10. 1016/j.jcot.2020.04.028 181. Turaga KK, Girotra S. Are We Harming Cancer Patients by Delaying Their Cancer Surgery During the COVID-19 Pandemic? Ann Surg. (2020) 2:10.1097/SLA.0000000000003967. doi: 10.1097/SLA.0000000000003967 182. Aziz H, Filkins A, Kwon YK. Review of COVID-19 Outcomes in Surgical Patients. Am Surg. (2020) 86(7):741–5. doi: 10.1177/0003134820934395 183. Francis N, Dort J, Cho E, Feldman L, Keller D, Lim R, et al. SAGES and EAES recommendations for minimally invasive surgery during COVID-19 pandemic. Surg Endosc. (2020) 34(6):2327–31. doi: 10.1007/s00464-02007565-w 184. Arezzo A, Francis N, Mintz Y, Adamina M, Antoniou SA, Bouvy N, et al. EAES Recommendations for Recovery Plan in Minimally Invasive Surgery Amid COVID-19 Pandemic. Surg Endosc. (2021) 35(1):1–17. doi: 10. 1007/s00464-020-08131-0 185. Arimappamagan A, Vilanilam G, Pandey P. Is Elective Neurosurgery Justified During COVID-19 Pandemic? Neurol India. (2021) 69(1):21–5. doi: 10.4103/0028-3886.310113 186. Bernstein M (Editorial). Neurosurgical priority setting during a pandemic: COVID-19. J Neurosurg. (2020) 17:1–2. doi: 10.3171/2020.4.JNS201031 187. Patel ZM, Fernandez-Miranda J, Hwang PH, Nayak JV, Dodd R, Sajjadi H, et al. Letter: Precautions for Endoscopic Transnasal Skull Base Surgery During the COVID-19 Pandemic. Neurosurgery. (2020) 87(1):e66–7. doi: 10.1093/neuros/nyaa125 188. Givi B, Schiff BA, Chinn SB, Clayburgh D, Iyer NG, Jalisi S, et al. Safety Recommendations for Evaluation and Surgery of the Head and Neck During the COVID-19 Pandemic. JAMA Otolaryngol Head Neck Surg. (2020) 146(6):579–84. doi: 10.1001/jamaoto.2020.0780 189. Kessler RA, Zimering J, Gilligan J, Rothrock R, McNeill I, Shrivastava RK, et al. Neurosurgical management of brain and spine tumors in the COVID-19 era: an institutional experience from the epicenter of the pandemic. J Neurooncol. (2020) 148(2):211–9. doi: 10.1007/s11060-02003523-7 Frontiers in Surgery | www.frontiersin.org 22 2022 | Volume 9 | Article 889999 190. Pa ciani PP, Saraceno G, Zanin L, Renisi G, Sign rini L, Fontanella MM. Letter: COVID-19 Infection Affects Surgical Outcome of Chronic Subdural Hematoma. Neurosurgery. (2020) 87(2):e167–71. doi: 10.1093/ neuros/nyaa140 191. Ozoner B, Gungor A, Hasanov T, Toktas ZO, Kilic T. Neurosurgical Practice During Coronavirus Disease 2019 (COVID-19) Pandemic. World Neurosurg. (2020) 140:198–207. doi: 10.1016/j.wneu.2020.05.195 192. Liu H, Wang Z, Sun H, Teng T, L Y, Zhou X, et al. Thrombosis and Coagulopathy in COVID-19: Current Understanding and Implications for Antithrombotic T eatment in Patients Trea ed With Percutaneous oronary Intervention. Front Cardiovasc Med. (2020) 7:599334. doi: 10. 3389/fcvm.2020.599334 193. M hmud E, Dauerma HL, Welt FGP, Messe ger JC, Rao SV, Grines C, et al. Management of Acute Myocardial Infarction During the COVID-19 Pandemic: A P sition Statement From the Society for Cardiovascular Angiography and I terventions (SCAI), the Amer can Co lege of Cardiology (ACC), and the American Coll ge f Emergency Physicians (ACEP). J Am Coll Cardiol. (2020) 76(11):1375–84. doi: 10.1016/j.jacc. .04.039 94. Spiezia L, Boscolo A, Poletto F, Cerruti L, Tiberio I, Campello E, et al. COVID-19-Related Severe Hypercoagulab lity in Pati nts Admitted to Intensive Ca e U it for Acute Respiratory Failure. Thromb Haemost. (2020) 120(6):998–1000. doi: 1 .1055/s-0040-1710018 195. Roh DJ, Eiseman K, Kirsch H, Yoh N, Boehme A, Agarwal S, et al. Hypercoagulable viscoelastic blood clot characteristics in critically ill coronavirus disease 2019 patients and associations with thrombotic complications. J Trauma Acute Care Surg. (2021) 90(1):e7–12. doi: 10. 1097/TA.0000000000002963 196. Aires RB, Soares A, Gomides APM, Nicola AM, Teixeira-Carvalho A, da Silva DLM, et al. Thromboelastometry demonstrates endogenous coagulation activation in nonsevere and severe COVID-19 patients and has applicability as a decision algorithm for intervention. PLoS One. (2022) 17(1):e0262600. doi: 10.1371/journal.pone.0262600 197. Krieger JB, Jennelle. The Use of ECMO in Patients with Cardiopulmonary Failure Due to COVID-19, American College of Cardiology (2020). Available at: https://www.acc.org/latest-in-cardiology/articles/2020/08/03/ 12/44/the-use-of-ecmo-in-patients-with-cardiopulmonary-failure-due-tocovid-19 (accessed February 6, 2022). 198. Hassan A, Arora RC, Adams C, Bouchard D, Cook R, Gunning D, et al. Cardiac Surgery in Canada During the COVID-19 Pandemic: A Guidance Statement From the Canadian Society of Cardiac Surgeons. Can J Cardiol. (2020) 36(6):952–5. doi: 10.1016/j.cjca.2020.04.001 199. Dorfman R, Saadat S, Gupta N, Roostaeian J, Da Lio A. The COVID-19 Pandemic and Plastic Surgery: Literature Review, Ethical Analysis, and Proposed Guidelines. Plast Reconstr Surg. (2020) 146(4):482e–93e. doi: 10. 1097/PRS.0000000000007268 200. Ozturk CN, Kuruoglu D, Ozturk C, Rampazzo A, Gurunian Gurunluoglu R. Plastic Surgery and the COVID-19 Pandemic: A Review of Clinical Guidelines. Ann Plast Surg. (2020) 85(2S Suppl 2):S155–60. doi: 10.1097/ SAP.0000000000002443 201. Nguyen AX, Gervasio KA, Wu AY. COVID-19 Recommendations From Ophthalmic and Plastic Reconstructive Surgery Societies Worldwide. Ophthalmic Plast Reconstr Surg. (2020) 36(4):334–45. doi: 10.1097/IOP. 0000000000001776 202. Al-Benna S. Failure of Free Flaps in Head and Neck Oncology Surgery in COVID-19 Patients. Plast Reconstr Surg. (2021) 147(5):900e–1e. doi: 10. 1097/PRS.0000000000007847 203. Benmoussa N, Alkhashnam H. Reply: Failure of Free Flaps in Head and Neck Oncology Surgery in COVID-19 Patients. Plast Reconstr Surg. (2021) 147(5):901e. doi: 10.1097/PRS.0000000000007849 204. MarseeMK, Shariff FS, Wiarda G, Watson PJ, Sualeh AH, Brenner TJ, et al. Use of Thromboelastography and Rotational Thromboelastometry in Otolaryngology: A Narrative Review. J Clin Med. (2022) 11(4):1119. doi: 10.3390/jcm11041119 205. Stahel PF. How to risk-stratify elective surgery during the COVID-19 pandemic? Patient Saf Surg. (2020) 14:8. doi: 10.1186/s13037-020-00235-9 Conflict of Interest: EEM: Research support from Haemonetics, Instrume tation Laboratory, Hemosonics, Stago, and Diapharma. HBM: Research support from Haemonetics and Instumentation Laboratory. MJK is a non-executive director and shareholder of Gknowmix (Pty) Ltd. EP is the managing director of BioCODE Technologies. MMW is on the speaker’s bureau for AstraZeneca. Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher. Copyright © 2022 Bunch, Moore, Moore, Neal, Thomas, Zackariya, Zhao, Zackariya, Brenner, Berquist, Buckner, Wiarda, Fulkerson, Huff, Kwaa , Lankowicz, Laubscher, Lourens, Pretorius, Kotze, Moolla, Sithole, Maponga, Kell, Fox, Gillesp e, Khan, Mamczak, March, Macias, Bull a d Walsh. This is open-access article distributed under the terms of the Creative Commons Attributi n License (CC BY). The use, distribution or reproductio in ot er forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. Bunch et al. COVID-19 Immuno-Thrombosis and Surgery Frontiers in Surgery | www.frontiersin.org 23 2022 | Volume 9 | Article 889999 ncy: a 0029s and :83–6. enous and 2001) , et al. sarean -0349 da M, reased oi: 10. k NM, J Clin n the 13740 actice 2018) after 2015) uiding actual oi: 10. eding n the 1177/ or the ombo1007/ Greene omen 1) 181 n WA, with ):571. owski gnant BMC 68-0 ges in ry for 1016/ l. Can s with oi: 10. Ability eview 1097/ D-19: and oi: 10. 171. Donell ST, Thaler M, Budhiparama NC, Buttaro MA, Chen AF, DiazLedezma C, et al. Preparation for the next COVID-19 wave: The European Hip Society and European Knee Associates recommendations. Knee urg Sports Traumatol Arthrosc. (2020) 28(9):2747–55. doi: 10.1007/ s00167-020-06213-z 172. Ding BTK, Decruz J, Kunnasegaran R. Time-sensitive ambulatory orthopaedic soft-tissue surgery paradigms during the COVID-19 pandemic. Int Orthop. (2020) 44(8):1531–8. doi: 10.1007/s00264-020-04606-w 173. Kaidi AC, Held MB, Boddapati V, Trofa DP, Neuwirth AL. Timing and tips for total hip arthroplasty in a critically ill patient with coronavirus disease 2019 and a femoral neck fracture. Arthroplast Today. (2020) 6(3):566–70. doi: 10.1016/j.artd.2020.07.006 174. Giuffrida M, Cozzani F, Rossini M, Bonati E, Del Rio P. How COVID-19 pandemic has changed elective surgery: the experience in a general surgery unit at a COVID-hospital. Acta Biomed. (2020) 91(4):e2020152. doi: 10.23750/abm.v91i4.10301 175. Navarra G, Komaei I, Currò G, Angrisani L, Bellini R, Cerbone MR, et al. Bariatric surgery and the COVID-19 pandemic: SICOB recommendations on how to perform surgery during the outbreak and when to resume the activities in phase 2 of lockdown. Updates Surg. (2020) 72(2):259–68. doi: 10.1007/s13304-020-00821-7 176. Pereira MR, Mohan S, Cohen DJ, Husain SA, Dube GK, Ratner LE, et al. COVID-19 in solid organ transplant recipients: Initial report from the US epicenter. Am J Transplant. (2020) 20(7):1800–8. doi: 10.1111/ajt.15941 177. Akalin E, Azzi Y, Bartash R, Seethamraju H, Parides M, Hemmige V, et al. Covid-19 and Kidney Transplantation. N Engl J Med. (2020) 382(25): 2475–7. doi: 10.1056/NEJMc2011117 178. Azzi Y, Bartash R, Scalea J, Loarte-Campos P, Akalin E. COVID-19 and Solid Organ Transplantation: A Review Article. Transplantation. (2021) 105(1):37–55. doi: 10.1097/TP.0000000000003523 179. Romagnoli R, Gruttadauria S, Tisone G, Maria Ettorre G, De Carlis L, Martini S, et al. Liver transplantation from active COVID-19 donors: A lifesaving opportunity worth grasping? Am J Transplant. (2021) 21 (12):3919–25. doi: 10.1111/ajt.16823 180. Kates OS, Fisher CE, Rakita RM, Reyes JD, Limaye AP. Use of SARS-CoV2-infected deceased organ donors: Should we always “just say no?”. Am J Transplant. (2020) 20(7):1787–94. doi: 10.1111/ajt.16000 181. Turaga KK, Girotra S. Are We Harming Cancer Patients by Delaying Their Cancer Surgery During the COVID-19 Pandemic? Ann Surg. (2020) 2:10.1097/SLA.0000000000003967. doi: 10.1097/SLA.0000000000003967 182. Aziz H, Filkins A, Kwon YK. Review of COVID-19 Outcomes in Surgical Patients. Am Surg. (2020) 86(7):741–5. doi: 10.1177/0003134820934395 183. Francis N, Dort J, Cho E, Feldman L, Keller D, Lim R, et al. SAGES and EAES recommendations for minimally invasive surgery during COVID-19 pandemic. Surg Endosc. (2020) 34(6):2327–31. doi: 10.1007/s00464-02007565-w 184. Arezzo A, Francis N, Mintz Y, Adamina M, Antoniou SA, Bouvy N, et al. EAES Recommendations for Recovery Plan in Minimally Invasive Surgery Amid COVID-19 Pandemic. Surg Endosc. (2021) 35(1):1–17. doi: 10. 1007/s00464-020-08131-0 185. Arimappamagan A, Vilanilam G, Pandey P. Is Elective Neurosurgery Justified During COVID-19 Pandemic? Neurol India. (2021) 69(1):21–5. doi: 10.4103/0028-3886.310113 186. Bernstein M (Editorial). Neurosurgical priority setting during a pandemic: COVID-19. J Neurosurg. (2020) 17:1–2. doi: 10.3171/2020.4.JNS201031 187. Patel ZM, Fernandez-Miranda J, Hwang PH, Nayak JV, Dodd R, Sajjadi H, et al. Letter: Precautions for Endoscopic Transnasal Skull Base Surgery During the COVID-19 Pandemic. Neurosurgery. (2020) 87(1):e66–7. doi: 10.1093/neuros/nyaa125 188. Givi B, Schiff BA, Chinn SB, Clayburgh D, Iyer NG, Jalisi S, et al. Safety Recommendations for Evaluation and Surgery of the Head and Neck During the COVID-19 Pandemic. JAMA Otolaryngol Head Neck Surg. (2020) 146(6):579–84. doi: 10.1001/jamaoto.2020.0780 189. Kessler RA, Zimering J, Gilligan J, Rothrock R, McNeill I, Shrivastava RK, et al. Neurosurgical management of brain and spine tumors in the COVID-19 era: an institutional experience from the epicenter of the pandemic. J Neurooncol. (2020) 148(2):211–9. doi: 10.1007/s11060-02003523-7 COVID-19 Immuno-Thrombosis and Surgery 22 2022 | Volume 9 | Article 889999 190. Panciani PP, Saraceno G, Zanin L, Renisi G, Signorini L, Fontanella MM. Letter: COVID-19 Infection Affects Surgical Outcome of Chronic Subdural Hematoma. Neurosurgery. (2020) 87(2):e167–71. doi: 10.1093/ neuros/nyaa140 191. Ozoner B, Gungor A, Hasanov T, Toktas ZO, Kilic T. Neurosurgical Practice During Coronavirus Disease 2019 (COVID-19) Pandemic. World Neurosurg. (2020) 140:198–207. doi: 10.1016/j.wneu.2020.05.195 192. Liu H, Wang Z, Sun H, Teng T, Li Y, Zhou X, et al. Thrombosis and Coagulopathy in COVID-19: Current Understanding and Implications for Antithrombotic Treatment in Patients Treated With Percutaneous Coronary Intervention. Front Cardiovasc Med. (2020) 7:599334. doi: 10. 3389/fcvm.2020.599334 193. Mahmud E, Dauerman HL, Welt FGP, Messenger JC, Rao SV, Grines C, et al. Management of Acute Myocardial Infarction During the COVID-19 Pandemic: A Position Statement From the Society for Cardiovascular Angiography and Interventions (SCAI), the American College of Cardiology (ACC), and the American College of Emergency Physicians (ACEP). J Am Coll Cardiol. (2020) 76(11):1375–84. doi: 10.1016/j.jacc. 2020.04.039 194. Spiezia L, Boscolo A, Poletto F, Cerruti L, Tiberio I, Campello E, et al. COVID-19-Related Severe Hypercoagulability in Patients Admitted to Intensive Care Unit for Acute Respiratory Failure. Thromb Haemost. (2020) 120(6):998–1000. doi: 10.1055/s-0040-1710018 195. Roh DJ, Eiseman K, Kirsch H, Yoh N, Boehme A, Agarwal S, et al. Hypercoagulable viscoelastic blood clot characteristics in critically ill coronavirus disease 2019 patients and associations with thrombotic complications. J Trauma Acute Care Surg. (2021) 90(1):e7–12. doi: 10. 1097/TA.0000000000002963 196. Aires RB, Soares A, Gomides APM, Nicola AM, Teixeira-Carvalho A, da Silva DLM, et al. Thromboelastometry demonstrates endogenous coagulation activation in nonsevere and severe COVID-19 patients and has applicability as a decision algorithm for intervention. PLoS One. (2022) 17(1):e0262600. doi: 10.1371/journal.pone.0262600 197. Krieger JB, Jennelle. The Use of ECMO in Patients with Cardiopulmonary Failure Due to COVID-19, American College of Cardiology (2020). Available at: https://www.acc.org/latest-in-cardiology/articles/2020/08/03/ 12/44/the-use-of-ecmo-in-patients-with-cardiopulmonary-failure-due-tocovid-19 (accessed February 6, 2022). 198. Hassan A, Arora RC, Adams C, Bouchard D, Cook R, Gunning D, et al. Cardiac Surgery in Canada During the COVID-19 Pandemic: A Guidance Statement From the Canadian Society of Cardiac Surgeons. Can J Cardiol. (2020) 36(6):952–5. doi: 10.1016/j.cjca.2020.04.001 199. Dorfman R, Saadat S, Gupta N, Roostaeian J, Da Lio A. The COVID-19 Pandemic and Plastic Surgery: Literature Review, Ethical Analysis, and Proposed Guidelines. Plast Reconstr Surg. (2020) 146(4):482e–93e. doi: 10. 1097/PRS.0000000000007268 200. Ozturk CN, Kuruoglu D, Ozturk C, Rampazzo A, Gurunian Gurunluoglu R. Plastic Surgery and the COVID-19 Pandemic: A Review of Clinical Guidelines. Ann Plast Surg. (2020) 85(2S Suppl 2):S155–60. doi: 10.1097/ SAP.0000000000002443 201. Nguyen AX, Gervasio KA, Wu AY. COVID-19 Recommendations From Ophthalmic and Plastic Reconstructive Surgery Societies Worldwide. Ophthalmic Plast Reconstr Surg. (2020) 36(4):334–45. doi: 10.1097/IOP. 0000000000001776 202. Al-Benna S. Failure of Free Flaps in Head and Neck Oncology Surgery in COVID-19 Patients. Plast Reconstr Surg. (2021) 147(5):900e–1e. doi: 10. 1097/PRS.0000000000007847 203. Benmoussa N, Alkhashnam H. Reply: Failure of Free Flaps in Head and Neck Oncology Surgery in COVID-19 Patients. Plast Reconstr Surg. (2021) 147(5):901e. doi: 10.1097/PRS.0000000000007849 204. MarseeMK, Shariff FS, Wiarda G, Watson PJ, Sualeh AH, Brenner TJ, et al. Use of Thromboelastography and Rotational Thromboelastometry in Otolaryngology: A Narrative Review. J Clin Med. (2022) 11(4):1119. doi: 10.3390/jcm11041119 205. Stahel PF. How to risk-stratify elective surgery during the COVID-19 pandemic? Patient Saf Surg. (2020) 14:8. doi: 10.1186/s13037-020-00235-9 Conflict of Interest: EEM: Research support from Haemonetics, Instrumentation Laboratory, Hemosonics, Stago, and Diapharma. HBM: Research support from Haemonetics and Instumentation Laboratory. MJK is a non-executive director and shareholder of Gknowmix (Pty) Ltd. EP is the managing director of BioCODE Technologies. MMW is on the speaker’s bureau for AstraZeneca. Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher. Copyright © 2022 Bunch, Moore, Moore, Neal, Thomas, Zackariya, Zhao, Zackariya, Brenner, Berquist, Buckner, Wiarda, Fulkerson, Huff, Kwaan, Lankowicz, Laubscher, Lourens, Pretorius, Kotze, Moolla, Sithole, Maponga, Kell, Fox, Gillespie, Khan, Mamczak, March, Macias, Bull and Walsh. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. Bunch et al. COVID-19 Immuno-Thrombosis and Surgery

RkJQdWJsaXNoZXIy MTExMDc1