462

| The Surgical Technologist | JUNE 2022 276 [137] Y. Rhee, S. J. Park, T. Kim, N. Kim, D. H. Yang, and J. B. Kim, “Pre-sewn multi-branched aortic graft and 3D-printing guidance for Crawford extent II or III thoracoabdominal aortic aneurysm repair,” Seminars in Thoracic and Cardiovascular Surgery, 2021. [138] D. Etherton, L. Tee, C. Tillett, Y. H. Wong, C. H. Yeong, and Z. Sun, “3D visualization and 3D printing in abnormal gastrointestinal system manifestations of situs ambiguus,” Quantitative Imaging in Medicine and Surgery, vol. 10, no. 9, p. 1877, 2020. [139] L. Pugliese, S. Marconi, E. Negrello et al., “The clinical use of 3D printing in surgery,” Updates in surgery, vol. 70, no. 3, pp. 381–388, 2018. [140] J. Fletcher, C. Myles, D. Miskovic, J. Jones, and R. Cahill, “855 patient specific digital modelling and 3D printing of abdominal anatomy-the next frontier in surgical simulation?,” British Journal of Surgery, vol. 108, Supplement_2, 2021. [141] A. Pietrabissa, S. Marconi, E. Negrello et al., “An overview on 3D printing for abdominal surgery,” Surgical endoscopy, vol. 34, no. 1, pp. 1–13, 2020. [142] P. Grimminger, L. Goense, I. Gockel et al., “Diagnosis, assessment, and management of surgical complications following esophagectomy,” Annals of the New York Academy of Sciences, vol. 1434, no. 1, pp. 254–273, 2018. [143] I. W. Mboumi, S. Reddy, and A. O. Lidor, “Complications after esophagectomy,” Surgical Clinics, vol. 99, no. 3, pp. 501–510, 2019. [144] Y. Takeoka, K. Matsumoto, D. Taniguchi et al., “Regeneration of esophagus using a scaffold-free biomimetic structure [152] [153] [154] [155] [156] [157] [158] BioMed Research International 2019 Pandemic,” World neurosurgery, vol. 142, pp. e183– e194, 2020. [79] M. Randazzo, J. M. Pisapia, N. Singh, and J. P. Thawani, “3D printing in neurosurgery: a systematic review,” Surgical Neurology International, vol. 7, Supplement 33, pp. S801–S809, 2016. [80] A. A. Dmytriw, J. L. Martinez, J. Spears, and T. R. Marotta, “Cerebral aneurysm debuting as rupture during diagnostic CT angiography: an unexpected worst-case scenario,” The Neuroradiology Journal, vol. 29, no. 3, pp. 216–218, 2016. [81] A. Gunasekaran, J. M. Santos, and W. A. Vandergrift 3rd, “Supraorbital craniotomy for sellar solitary fibrous tumor: operative technique and literature review,” World Neurosurgery, vol. 141, pp. 395–401, 2020. [82] J. L. Martinez and R. L. Macdonald, “Surgical strategies for acutely ruptured arteriovenous malformations,” New Insights in Intracerebral Hemorrhage, vol. 37, pp. 166–181, 2015. [83] A. A. Dmytriw, J. L. Martinez, T. Marotta, W. Montanera, M. Cusimano, and A. Bharatha, “Use of aflow-diverting stent for ruptured dissecting aneurysm treatment in a patient with sickle cell disease,” Interventional Neuroradiology, vol. 22, no. 2, pp. 143–147, 2016. [84] C. Halabi, E. K. Williams, R. A. Morshed et al., “Neurological manifestations of polyarteritis nodosa: a tour of the neuroaxis by case series,” BMC Neurology, vol. 21, no. 1, pp. 205–205, 2021. [85] J. Martinez Santos, M. Hannay, A. Olar, and R. Eskandari, “Rathke's cleft cyst apoplexy in two teenage sisters,” Pediatric Neurosurgery, vol. 54, no. 6, pp. 428–435, 2019. [86] A. Ganguli, G. J. Pagan-Diaz, L. Grant et al., “3D printing for preoperative planning and surgical training: a review,” Biomed Microdevices, vol. 20, no. 3, p. 65, 2018. [87] J. L. Martinez, S. R. Lowe, A. Vandergrift, and S. J. Patel, “Microvascular decompression for trigeminal neuralgia and other neurovascular compression syndromes,”inManagement of Cerebrovascular Disorders, pp. 645–660, Springer, 2019. [88] J. L. M. Santos, A. A. Dmytriw, and S. Fermin, “Neurosurgical management of a large meningocele in Jarcho-Levin syndrome: clinical and radiological pearls,” Case Reports, vol. 2015, 2015. [89] W. C. Parr, J. L. Burnard, P. J. Wilson, and R. J. Mobbs, “3D printed anatomical (bio) models in spine surgery: clinical benefits and value to health care providers,” Journal of Spine Surgery, vol. 5, no. 4, pp. 549–560, 2019. [90] B. Wilcox, R. J. Mobbs, A.-M. Wu, and K. Phan, “Systematic review of 3D printing in spinal surgery: the current state of play,” Journal of Spine Surgery, vol. 3, no. 3, pp. 433–443, 2017. [91] N. Kaneko, H. Ullman, F. Ali et al., “In vitro modeling of human brain arteriovenous malformation for endovascular simulation and flow analysis,” World Neurosurgery, vol. 141, pp. e873–e879, 2020. surgery–ready for prime time?,” World Neurosurgery, vol. 80, no. 3-4, pp. 233–235, 2013. [95] O. Kilic, D. Pamies, E. Lavell et al., “Brain-on-a-chip model enables analysis of human neuronal differentiation and chemotaxis,” Lab on a Chip, vol. 16, no. 21, pp. 4152–4162, 2016. [96] M. A. Hermida, J. D. Kumar, D. Schwarz et al., “Three dimensional in vitro models of cancer: bioprinting multilineage glioblastoma models,” Advances in Biological Regulation, vol. 75, article 100658, 2020. [97] M. Vukicevic, B. Mosadegh, J. K. Min, and S. H. Little, “Cardiac 3D printing and its future directions,” JACC: Cardiovascular Imaging, vol. 10, no. 2, pp. 171–184, 2017. [98] J. Ryan, J. Plasencia, R. Richardson et al., “3D printing for congenital heart disease: a single site's initial three-yearexperience,” 3D Printing in Medicine, vol. 4, no. 1, p. 10, 2018. [99] J. L. Hermsen, A. Roldan-Alzate, and P. V. Anagnostopoulos, “Three-dimensional printing in congenital heart disease,” Journal of Thoracic Disease, vol. 12, no. 3, pp. 1194–1203, 2020. [100] G. Biglino, D. Koniordou, M. Gasparini et al., “Piloting the use of patient-specific cardiac models as a novel tool to facilitate communication during cinical consultations,” Pediatric Cardiology, vol. 38, no. 4, pp. 813–818, 2017. [101] I. Valverde, “Three-dimensional printed cardiac models: applications in the field of medical education, cardiovascular surgery, and structural heart interventions,” Revista Española de Cardiología (English Edition), vol. 70, no. 4, pp. 282–291, 2017. [102] J. P. Costello, L. J. Olivieri, L. Su et al., “Incorporating threedimensional printing into a simulation-based congenital heart disease and critical care training curriculum for resident physicians,” Congenital Heart Disease, vol. 10, no. 2, pp. 185– 190, 2015. [103] I. Lau and Z. Sun, “Three-dimensional printing in congenital heart disease: a systematic review,” Journal of Medical Radiation Sciences, vol. 65, no. 3, pp. 226–236, 2018. [104] R. A. Nishimura, A. Vahanian, M. F. Eleid, and M. J. Mack, “Mitral valve disease–current management and future challenges,” Lancet, vol. 387, article 10025, pp. 1324–1334, 2016. [105] J. H. T. Daemen, S. Heuts, J. R. Olsthoorn, J. G. Maessen, and P. Sardari Nia, “Mitral valve modelling and threedimensional printing for planning and simulation of mitral valve repair,” European Journal of Cardio-Thoracic Surgery, vol. 55, no. 3, pp. 543–551, 2019. [106] V. Tuncay and P. M. A. van Ooijen, “3D printing for heart valve disease: a systematic review,” European Radiology Experimental, vol. 3, no. 1, p. 9, 2019. [107] S. H. Yoon, S. Bleiziffer, A. Latib et al., “Predictors of left ventricular outflow tract obstruction after transcatheter mitral valve replacement,” JACC: Cardiovascular Interventions, vol. 12, no. 2, pp. 182–193, 2019. roeratta, ges urthe ase 83– “3D eu809, tta, stic The . 3rd, mor: urfor ghts era, ent with 22, ical axis 205, ari, tric for w,” atel, and ment [92] S. S. Panesar, J. T. A. Belo, and R. N. D'Souza, “Feasibility of clinician-facilitated three-dimensional printing of synthetic cranioplasty flaps,” World Neurosurgery, vol. 113, pp. e628– e637, 2018. [93] T. M. Rankin, N. A. Giovinco, D. J. Cucher, G. Watts, B. Hurwitz, and D. G. Armstrong, “Three-dimensional printing surgical instruments: are we there yet?,” Journal of Surgical Research, vol. 189, no. 2, pp. 193–197, 2014. [94] G. T. Klein, Y. Lu, and M. Y. Wang, “3D printing and neurosurgery–ready for prime time?,” World Neurosurgery, vol. 80, no. 3-4, pp. 233–235, 2013. [95] O. Kilic, D. Pamies, E. Lavell et al., “Brain-on-a-chip model enables analysis of human neuronal differentiation and chemotaxis,” Lab on a Chip, vol. 16, no. 21, pp. 4152–4162, 2016. [96] M. A. Hermida, J. D. Kumar, D. Schwarz et al., “Three dimensional in vitro models of cancer: bioprinting multilineage glioblastoma models,” Advances in Biological Regulation, vol. 75, article 100658, 2020. [97] M. Vukicevic, B. Mosadegh, J. K. Min, and S. H. Little, “Cardiac 3D printing and its future directions,” JACC: Cardiovascular Imaging, vol. 10, no. 2, pp. 171–184, 2017. [98] J. Ryan, J. Plasencia, R. Richardson et al., “3D printing for congenital heart disease: a single site's initial three-yearexperience,” 3D Printing in Medicine, vol. 4, no. 1, p. 10, 2018. [99] J. L. Hermsen, A. Roldan-Alzate, and P. V. Anagnostopoulos, “Three-dimensional printing in congenital heart disease,” Journal of Thoracic Disease, vol. 12, no. 3, pp. 1194–1203, 2020. [100] G. Biglino, D. Koniordou, M. Gasparini et al., “Piloting the use of patient-specific cardiac models as a novel tool to facilitate communication during cinical consultations,” Pediatric Cardiology, vol. 38, no. 4, pp. 813–818, 2017. [101] I. Valverde, “Three-dimensional printed cardiac models: applications in the field of medical education, cardiovascular surgery, and structural heart interventions,” Revista Española de Cardiología (English Edition), vol. 70, no. 4, pp. 282–291, 2017. [102] J. P. Costello, L. J. Olivieri, L. Su et al., “Incorporating threedimensional printing into a simulation-based congenital heart disease and critical care training curriculum for resident physicians,” Congenital Heart Disease, vol. 10, no. 2, pp. 185– 190, 2015. [103] I. Lau and Z. Sun, “Three-dimensional printing in congenital heart disease: a systematic review,” Journal of Medical Radia21 manifestations of polyarteritis nodosa: a tour of the neuroaxis by case series,” BMC Neurology, vol. 21, no. 1, pp. 205–205, 2021. [85] J. Martinez Santos, M. Hannay, A. Olar, and R. Eskandari, “Rathke's cleft cyst apoplexy in two teenage sisters,” Pediatric Neurosurgery, vol. 54, no. 6, pp. 428–435, 2019. [86] A. Ganguli, G. J. Pagan-Diaz, L. Grant et al., “3D printing for preoperative planning and surgical training: a review,” Biomed Microdevices, vol. 20, no. 3, p. 65, 2018. [87] J. L. Martinez, S. R. Lowe, A. Vandergrift, and S. J. Patel, “Microvascular decompression for trigeminal neuralgia and other neurovascular compression syndromes,”inManagement of Cerebrovascular Disorders, pp. 645–660, Springer, 2019. [88] J. L. M. Santos, A. A. Dmytriw, and S. Fermin, “Neurosurgical management of a large meningocele in Jarcho-Levin syndrome: clinical and radiological pearls,” Case Reports, vol. 2015, 2015. [89] W. C. Parr, J. L. Burnard, P. J. Wilson, and R. J. Mobbs, “3D printed anatomical (bio) models in spine surgery: clinical benefits and value to health care providers,” Journal of Spine Surgery, vol. 5, no. 4, pp. 549–560, 2019. [90] B. Wilcox, R. J. Mobbs, A.-M. Wu, and K. Phan, “Systematic review of 3D printing in spinal surgery: the current state of play,” Journal of Spine Surgery, vol. 3, no. 3, pp. 433–443, 2017. [91] N. Kaneko, H. Ullman, F. Ali et al., “In vitro modeling of human brain arteriovenous malformation for endovascular simulation and flow analysis,” World Neurosurgery, vol. 141, pp. e873–e879, 2020. Cardiology, vol. 38, no. 4, pp. 813–818, 2017. [101] I. Valverde, “Three-dimensional printed cardiac models: applications in the field of medical education, cardiovascular surgery, and structural heart interventions,” Revista Española de Cardiología (English Edition), vol. 70, no. 4, pp. 282–291, 2017. [102] J. P. Costello, L. J. Olivieri, L. Su et al., “Incorporating threedimensional printing into a simulation-based congenital heart disease and critical care training curriculum for resident physicians,” Congenital Heart Disease, vol. 10, no. 2, pp. 185– 190, 2015. [103] I. Lau and Z. Sun, “Three-dimensional printing in congenital heart disease: systematic review,” Journ of Medical Radiati Sciences, vol. 65, no. 3, pp. 226–236, 2018. [104] R. A. Nishimura, A. Vahanian, M. F. Eleid, and M. J. Mack, “Mitral valve disease–current management and future challenges,” Lancet, vol. 387, article 10025, pp 1324–1334, 2016. [105] J. H. T. Daemen, S. Heuts, J. R. Olsthoorn, J. G. Maessen, and P. Sardari Nia, “Mitral valve modelling and threedimensional printing for planning and simulation of mitral valve repair,” European Journal of Card o-Thoracic Sur ery, vol. 55, no. 3, p . 543–551, 2019. [106] V. Tuncay and P. M. A. van Ooijen, “3D printing for heart valve disease: a systematic review,” European Radiology Experim ntal, vol. 3, no. 1, p. 9, 2019. [107] S. H. Yoon, S. Bleiziffer, A. Latib et al., “Predictors of left ventricular outflow tract obstruction after transcatheter mitral valve replacement,” JACC: Cardiovascular Interventions, vol. 12, no. 2, pp. 182–193, 2019. [108] K. Kohli, Z. A. Wei, A. P. Yoganathan, J. N. Oshinski, J. Leipsic, and P. Blanke, “Transcatheter mitral valve planning and the neo-LVOT: utilization of virtual simulation models and 3D printing,” Current Treatment Options in Cardiovascular Medicine, vol. 20, no. 12, p. 99, 2018. [109] S. Christou, T. Chatziathanasiou, S. Angeli et al., “Anatomical variability in the upper tracheobronchial tree: sex-based differences and implications for personalized inhalation therapies,” Journal of Applied Physiology, vol. 130, no. 3, pp. 678–707, 2021. [110] M. A. Özgül, E. Çetinkaya, E. C. Seyhan et al., “Airway stents: a retrospective evaluation of indications, results and complications in our 10-year experience,” Tuberk Toraks, vol. 67, no. 4, pp. 272–284, 2019. [111] A. H. Alraiyes, S. K. Avasarala, M. S. Machuzak, and T. R. Gildea, “3D printing for airway disease,” AME Medical Journal, vol. 4, 2019. [112] L. Freitag, M. Gördes, P. Zarogoulidis et al., “Towards individualized tracheobronchial stents: technical, practical and legal considerations,” Respiration, vol. 94, no. 5, pp. 442– 456, 2017. [113] A. A. Giannopoulos, M. L. Steigner, E. George et al., “Cardiothoracic applications of 3-dimensional printing,” Journal of Thoracic Imaging, vol. 31, no. 5, pp. 253–272, 2016. [114] D. Schmauss, S. Haeberle, C. Hagl, and R. Sodian, “Threedimensional printing in cardiac surgery and interventional cardiology: a single-centre experience,” European Journal of Cardio-Thoracic Surgery, vol. 47, no. 6, pp. 1044–1052, 2015. [115] K. H. Lim, Z. Y. Loo, S. J. Goldie, J. W. Adams, and P. G. McMenamin, “Use of 3D printed models in medical education: a randomized control trial comparing 3D prints versus cadaveric materials for learning external cardiac anatomy,” Anatomical Sciences Education, vol. 9, no. 3, pp. 213–221, 2016. [116] W. Su, Y. Xiao, S. He, P. Huang, and X. Deng, “Three-dimensional printing models in congenital heart disease education for medical students: a controlled comparative study,” BMC Medical Education, vol. 18, no. 1, p. 178, 2018. [117] S. Anwar, G. K. Singh, J. Miller et al., “3D printing is a transformative technology in congenital heart disease,” JACC: Basic to Translational Science, vol. 3, no. 2, pp. 294–312, 2018. [118] P. Lermusiaux, C. Leroux, J. C. Tasse, L. Castellani, and R. Martinez, “Aortic aneurysm: construction of a life-size model by rapid prototyping,” Annals of Vascular Surgery, vol. 15, no. 2, pp. 131–135, 2001. [119] R. Srinivasa, N. Malguria, R. Chopra, and S. Reis, “Abstract no. 520- how to create 3D printable models from CT angiographic images for patient and trainee education,” Journal of Vascular and Interventional Radiology, vol. 3, no. 27, pp. S230–S231, 2016. [120] L. Eisenmenger, G. Kumpati, and E. Huo, “Abstract no. 5343D printed patient specific aortic models for patient education and preoperative planning,” Journal of Vascular and Interventional Radiology, vol. 27, no. 3, pp. S236–S237, 2016. [121] I. Torres and N. De Luccia, “Artificial vascular models for endovascular training (3D printing),” Innovative Surgical Sciences, vol. 3, no. 3, pp. 225–234, 2018. [122] P. Marti, F. Lampus, D. Benevento, and C. Setacci, “Trends in use of 3D printing in vascular surgery: a survey,” International Angiology: A Journal of the International Union of Angiology, vol. 38, no. 5, pp. 418–424, 2019. [123] R. Sheth, E. R. Balesh, Y. S. Zhang, J. A. Hirsch, A. Khademhosseini, and R. Oklu, “Three-dimensional printing: an enabling technology for IR,” Journal of Vascular and Interventional Radiology, vol. 27, no. 6, pp. 859–865, 2016. [124] H. Takao, S. Amemiya, E. Shibata, and K. Ohtomo, “Threedimensional printing of hollow portal vein stenosis models: a feasibility study,” Journal of Vascular and Interventional Radiology: JVIR, vol. 27, no. 11, pp. 1755–1758, 2016. [125] I. Koleilat, M. Jaeggli, J. A. Ewing, M. Androes, D. T. Simionescu, and J. Eidt, “Interobserver variability in physicianmodified endograft planning by comparison with a threedimensional printed aortic model,” Journal of Vascular Surgery, vol. 64, no. 6, pp. 1789–1796, 2016. [126] J. H. You, S.-G. Kang, and B. M. Kim, “A novel measurement technique for the design of fenestrated stent grafts: comparison with three-dimensional aorta models,” Experimental & Clinical Cardiology, vol. 18, no. 1, pp. 48–52, 2013. [127] N. Martelli, C. Serrano, H. van den Brink et al., “Advantages and disadvantages of 3-dimensional printing in surgery: a systematic review,” Surgery, vol. 159, no. 6, pp. 1485–1500, 2016. [128] E. Girsowicz, Y. Georg, H. Seiller et al., “Evaluation of nitinol stents using a 3-dimensional printed superficial femoral artery model: a preliminary study,” Annals of Vascular Surgery, vol. 33, pp. 1–10, 2016. [129] R. Sodian, D. Schmauss, C. Schmitz et al., “3-Dimensional printing of models to create custom-made devices for coil embolization of an anastomotic leak after aortic arch replacement,” The Annals of Thoracic Surgery, vol. 88, no. 3, pp. 974–978, 2009. [130] G. J. Arnaoutakis and W. Y. Szeto, “Endovascular approaches to the ascending aorta are right around the corner,” The Journal of Thoracic and Cardiovascular Surgery, vol. 152, no. 1, pp. 285-286, 2016. [131] K. Lee, E. Leci, T. Forbes, L. Dubois, G. DeRose, and A. Power, “Endograft conformability and aortoiliac tortuosity in endovascular abdominal aortic aneurysm repair,” Journal of Endovascular Therapy, vol. 21, no. 5, pp. 728–734, 2014. [132] J. Gindre, A. Bel-Brunon, A. Kaladji et l., “Finite element simulation of the i sertion of guidewires during an EVAR procedure: example of a complex patient case, a first step toward patient-specific parameterized models,” International Journal for Numerical Methods in Biomedical Engineering, vol. 31, no. 7, article e02716 2015. [133] P. Bangeas, G. Voulalas, a K. Ktenidis, “Rapid prototyping in aortic surgery,” Interactive Cardiovascular and Thoracic S rgery, vol. 22, no. 4, pp. 513-514, 2016. [134] F. Li, Y. Shan, Y. Zhang, and G. Niu, “Occlusion of an ascending aortic pseudoaneurysm with intraoperative echocardiography and a printed model,” The Journal of Thoracic and Cardiovascular Surgery, vol. 152, no. 1, pp. 282–284, 2016. [135] B. Dorweiler, H. El Beyrouti, C. F. Vahl, P.-E. Baqué, and A. Ghazy, “Gefäßmedizin in der Zukunft–Möglichkeiten mit 3D-Druckverfahren,” Zentralblatt für Chirurgie-Zeitschrift für Allg meine, Viszer l-, Thorax-und Gefäßchirurgie, vol. 145, no. 5, pp. 448–455, 2020. [136] B. Dorweiler, P. E. Baqué, R. Chaban, A. Ghazy, and O. Sale , “Quality co trol in 3D printing: accuracy nalysis of 3D-printed mod ls patient-specific natomy,” Materials, vol. 14, no. 4, 2021. 22 BioMed Research International [108] K. Kohli, Z. A We , A. P Yoganatha , J. N. Oshinski, J. Leipsic, nd P. Blanke, “Transcathe er mitral valve planning and the eo-LVOT: utilizat on of virt al simulatio models nd 3D pri t ng,” Current Tr atment Options in ardiovascula Medici e, vol. 20, no. 12, p. 99, 2018. [109] S. Christou, T. Chatziathanasiou, S. Angel e al., “Anatomic variabil ty in the upper racheobronchial tree: s x-b sed f fere c s and implications for personalized inhalation therapies,” Journal of Applied Physiology, vol. 130, no. 3, pp. 678–707, 2021. [110] M. A. Özgül, E. Çetinkaya, E. C. Seyhan et al., “Airway stents: a retrospective evaluation of indicati s, results and complicatio s in our 10-year experience,” Tuberk Toraks, vol. 67, no. 4, pp. 272–284, 2019. [1 1] A. H. Alr iyes, S. K. Avasarala, M. S. Machuzak, and T. R. Gildea, “3D printing for airway disease,” AME Medical Journal, vol. 4, 2019. [112] L. Freitag, M. Gördes, P. Zarogoulidis et al., “Towards individualized tracheobronchial stents: technical, practical and legal considerations,” Respir tion, vol. 94, o. 5, pp. 442– 456, 2017. [113] A. A. Giannopoulos, M. L. Steigner, E. George et al., “Cardiothoracic applications of 3-dimensional printing,” Journal of Thoracic Imaging, vol. 31, no. 5, pp. 253–272, 2016. [114] D Schmauss, S. Haeberl C. Hagl, and R. Sodian, “Threedimensional pri ting in cardiac surgery and interventional cardio ogy: a single-ce tre experience,” European Jour al of Cardio-Tho acic Surg ry, vol. 47, no. 6, pp. 1044–1052, 2015. [1 5] K. H. Lim, Z. Y. Loo, S. J. Goldie, J. W. Ad ms, a d P. G. McMenamin, “Use of 3D printed models in medical education: a randomized ontrol trial comp ring 3D prints versus cadaveric materials for learning external cardiac anatomy,” Anatomical Sciences Education, vol. 9, no. 3, pp. 213–221, 2016. [116] W. Su, Y. Xiao, S. He, P. Huang, and X. Deng, “Three-di ensional pr ting mod ls in cong ital heart disease education for medical students: a controlled comparative study,” BMC Medical Education, vol. 18, no. 1, p. 178, 2018. [117] S. Anwar, G. K. Singh, J. Miller et al., “3D printing is a transformative technology in congenital heart disease,” JACC: Basic to Translational Science, vol. 3, no. 2, pp. 294–312, 2018. [118] P. Lermusiaux, C. Leroux, J. C. Tasse, L. Castellani, and R. Marti ez, “Aortic an urysm: constructio of a life-size model by rapid prototyping,” Annals of Vascular Surgery, vol. 15, no. 2, pp. 131–135, 2001. [119] R. S in vasa, N. Malguria, R. Chopra, nd S. Reis, “Abstract no. 520- how to create 3D printable models from CT angiographic images for patient and trainee education,” Journal of Vascular and Interventional Radiology, vol. 3, no. 27, pp. S230–S231, 2016. [120] L. Eisenmenger, G. Kumpati, and E. Huo, “Abstract no. 5343D printed patient specific aortic models for patient education and preoperative planning,” Journal of Vascular and Interventional Radiology, vol. 27, no. 3, pp. S236–S237, 2016. [121] I. Torr s and N. De Lucci , “Artificial vascular models for endovascul r trai ing (3D printing),” Innovative Surgical Sciences, vol. 3, no. 3, pp. 225–234, 2018. [122] P. Marti, F. Lampus, D. Benevento, and C. Setacci, “Trends in use of 3D printing in vascular surgery: a survey,” Internati nal Angiology: A Journal f the Intern onal Union of Angiology, vol. 38, no. 5, pp. 418–424, 2019. [123] R. Sheth, E. R. Balesh, Y. S. Zhang, J. A. Hirsch, A. Khademhosseini, and R. Oklu, “Three-dimensional printing: an enabling technology for IR,” Journal of Vascular and Interventional Radiology, vol. 27, no. 6, pp. 859–865, 2016. [124] H. Takao, S. Amemiya, E. Shibata, and K. Ohtomo, “Threedimensional printing of hollow portal vein stenosis models: a feasibility study,” Journal of Vascular and Interventional Radiology: JVIR, vol. 27, no. 11, pp. 1755–1758, 2016. [125] I. Koleilat, M. Jaeggli, J. A. Ewing, M. Androes, D. T. Simionescu, and J. Eidt, “Interobserver variability in physicianmodified endograft planning by comparison with a threedimensional printed aortic model,” Journal of Vascular Surgery, vol. 64, no. 6, pp. 1789–1796, 2016. [126] J. H. You, S.-G. Kang, and B. M. Kim, “A novel measurement technique for the design of fenestrated stent grafts: comparison with three-dimensional aorta models,” Experimental & Clinical Cardiology, vol. 18, no. 1, pp. 48–52, 2013. [127] N. Martelli, C. Serrano, H. van den Brink et al., “Advantages and disadvantages of 3-dimensional printing in surgery: a systematic review,” Surgery, vol. 159, no. 6, pp. 1485–1500, 2016. [128] E. Girsowicz, Y. Georg, H. Seiller et al., “Evaluation of nitinol stents using a 3-dimensional printed superficial femoral artery model: a preliminary study,” Ann ls of Vascular Surgery, vol. 33, pp. 1–10, 2016. [129] R. Sodian, D. Schmauss, C. Schmitz et al., “3-Dimensional printing of models to create custom-made devices for coil embolization of an anastomotic leak after aortic arch replacement,” The Annals of Thoracic Surgery, vol. 88, n . 3, pp. 974–978, 2009. [130] G. J. Arnaoutakis and W. Y. Szeto, “Endovascular approaches to the ascending aorta are right around the corner,” The Journal of Thoracic and Cardiovascular Su gery, vol. 152, no. 1, pp. 285-286, 2016. [131] K. L e, E. Lec , T. F bes, L. Dubois, G. DeRose, and A. Power, “Endograft conformability and aortoiliac tortuosity in endovascular abdominal aortic aneurysm repair,” Journal of Endovascular Therapy, vol. 21, no. 5, pp. 728–734, 2014. [132] J. Gindre, A. Bel-Bru on, A. Kaladji et al., “Finite element simulation of the insertion of guidewires during an EVAR procedur : example of a complex patient case, a first step towar patient-specific para terized models,” International Journal for Numerical Methods in Biomedical Engineering, vol. 31, no. 7, article e02716, 2015. [133] P. Bangeas, G. Voulalas, and K. Kt nidis, “Rapid prototypi g in aortic surgery,” Interactive Cardiovascular and Thoracic Surgery, v l. 22, no. 4, pp. 513-514, 2016. [134] F. Li, Y. Shan, Y. Zhang, and G. Niu, “Occlusion of an ascending aortic pseudoaneurysm with intraoperative echocardiography and a printed model,” The Journal of Thoracic and Cardiovascular Surgery, vol. 152, no. 1, pp. 282–284, 2016. [135] B. Dorweiler, H. El Beyrouti, C. F. Vahl, P.-E. Baqué, and A. Ghazy, “Gefäßmedizin in der Zukunft–Möglichkeiten mit 3D-Druckverfahren,” Zentralblatt für Chirurgie-Zeitschrift für Allgemeine, Viszeral-, Thorax-und Gefäßchirurgie, vol. 145, no. 5, pp. 448–455, 2020. [136] B. Dorweiler, P. E. Baqué, R. Chaban, A. Ghazy, and O. Salem, “Quality control in 3D printing: accuracy analysis of 3D-printed models of patient-specific anatomy, Materials, vol. 14, no. 4, 2021. 22 BioMed Research International

RkJQdWJsaXNoZXIy MTExMDc1